期刊文献+

考虑障碍的多端点最小直角Steiner树构造算法 被引量:1

An Efficient 2-Step Heuristics for Rectilinear Steiner Minimal Tree Construction among Obstacles
下载PDF
导出
摘要 首先将所有障碍视为不存在 ,构造初始Steiner树、连接线网所有端点 ,可采用已有的无障碍Steiner树算法来实现 然后考虑障碍的影响 ,改造所构造的初始Steiner树 :找到初始Steiner树与障碍的相交点 ,重布某些树边 ,使它们绕过障碍 ,并尽量保持树长较短 ;进一步地 ,加入预处理和后期处理措施 ,以更好地处理特殊线网并使算法的结果更优 该算法能够处理多个障碍的情况 ,并能适应多种形状的障碍 ;同时 ,算法有较高的效率 ,其复杂度为O(mn) ,其中 ,m和n分别是障碍个数和线网端点数 该算法已经在SUN工作站、Unix上利用C语言编程实现 ,并进行了MCNC电路测试 测试结果表明 :文中算法得到的树长结果仅与最优值平均相差 5. 31% ,且算法的执行时间保持在 A primary tree is first constructed without considering obstacles. Intersections of the primary tree edges with obstacles are found out and relevant parts of the primary tree are reconnected to keep clear of obstacles while the total length of the tree being shortest. Moreover, a preprocessing and post-processing are added into the second step to tackle some special treatments and improve the solution quality. The heuristics can deal with multi-obstacle and obstacles of diversified shapes with O(mn) complexity, where m is the number of obstacles and n is the number of terminals. Experimental tests on MCNC benchmarks show that the algorithm can get good results on wire length, its average redundancy compared with minimal trees is 5.31% and the runtime for all cases is within 1 second.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2005年第2期223-229,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60373012) 国家"八六三"高技术研究发展计划(2002AA1Z1460) 高校博士点基金(20020003008) 清华大学骨干人才支持计划([2002]4)
关键词 布线 最小直角Steiner树 障碍 多端点线网 routing rectilinear Steiner minimal tree (RSMT) obstacles multi-terminal
  • 相关文献

参考文献13

  • 1Dreyfus S E, Wagner R A. The Steiner problem in graphs [J].Networks, 1972(1): 195~207
  • 2Warme D M, Winter P, Zacharisen M. Exact algorithms for plane Steiner tree problem: A computational study [R].Copenhagen, Denmark: University of Copenhagen, DIKU-TR-98/11, 1998
  • 3Kahng A B, Robins G. A new class of iterative Steiner tree heuristics with good performance [J]. IEEE Transactions on Computer-Aided Design, 1992, 11(7): 893~902
  • 4Kahng A B, Mandoiu I, Zelikovsky A Z. Highly scalable algorithms for rectilinear and octilinear Steiner trees [A]. In:Proceedings of IEEE/ACM Asia-Pacific Design Automation Conference (ASP-DAC), Kitakyushu, Japan, 2003. 827~833
  • 5Ho J M, Sarrafzadeh M, Suzuki A. An exact algorithm for single-layer wire-length minimization [A]. In: Proceedings of IEEE/ACM International Conference of Computer Aided Design(ICCAD), Santa Clara, CA, 1990. 424~427
  • 6Chen Desheng, Sarrafzadeh M. A wire-length minimization algorithm for single-layer layout[A]. In: Proceedings of IEEE/ACM International Conference of Computer Aided Design(ICCAD), Santa Clara, CA, 1992. 390~393
  • 7Yukiko Kubo, Yasuhiro Takashima, Shigetoshi Nakatake, et al. Self-reforming routing for stochastic search in VLSI interconnection layout [A]. In: Proceedings of IEEE/ACM Asia-Pacific Design Automation Conference (ASP-DAC),Yokohama, Japan, 2000.87~92
  • 8Zheng S Q, Lim J S, Iyengar S S. Finding obstacle-avoiding shortest paths using implicit connection graphs [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1996, 15(1): 103~110
  • 9周智,蒋承东,黄刘生,顾钧.用Θ(t)的广义连接图求有障碍时的最短路径[J].软件学报,2003,14(2):166-174. 被引量:3
  • 10Liu J ian, Zhao Ying, Shragowitz E, et al. A polynomial time approximation scheme for rectilinear Steiner minimum tree construction in the presence of obstacles [ A]. In: Proceedings of IEEE International Symposium on Circuits and Systems(ISCAS), Scottsdale, 2002. 781~784

二级参考文献6

  • 1周智,硕士学位论文,1998年
  • 2Zheng S Q,IEEE Trans Comput Aided Des Integrated Circuits Systems,1996年,15卷,1期,103页
  • 3Wu Y F,IEEE Trans Comput,1987年,36卷,3期,321页
  • 4Rezend P J,Proc 2nd Annual Conf Computat Geom,1985年,ACM卷,204页
  • 5Lee C Y,IEEE Trans Electron Comput,1961年,10卷,346页
  • 6周智,陈国良,顾钧.用O(tlogt)的连接图求有障碍时的最短路径[J].计算机学报,1999,22(5):519-524. 被引量:10

共引文献10

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部