期刊文献+

一类时滞抛物型系统周期解的存在稳定性 被引量:1

Existence and stability of periodic solutions for parabolic systems with time delays
下载PDF
导出
摘要 利用上、下解方法及不动点理论研究了一类反应项非单调的时滞抛物型系统,构造了非单调反应项的上、下控制函数,并证明了所构造的函数满足Lipschitz条件及单调性,克服了反应项非单调无法利用单调迭代方法的局限性,为讨论反应项非单调的微分方程提供了一种有效方法,并获得了此系统边值问题周期解存在性的充分条件;另外,还给出了证明其周期解稳定性的方法,推广了已有的一些结果. In this paper, periodic solutions of parabolic systems with time delays are investigated. It is constructed that the upper and lower control function of nonmonotone reaction term, and it is showed that the function satisfies a global Lipschitz condition and quasimonotone.A sort of effective method of studying differential equation with nonmonotone reaction term is gained. By using the method of upper and lower solutions and fixed point theorem, it is shown that periodic solutions of this system exist when reaction-term is not monotone and the boundary value system has a pair of coupled -upper and lower solutions. Some methods for proving the stability of the periodic solution are also given. And some known results are extended.
作者 王长有
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2005年第2期23-27,共5页 Journal of Anhui University(Natural Science Edition)
基金 重庆邮电学院青年教师科技基金资助项目 (A2005 -14 ) 四川省学术与技术带头人基金资助项目(1200321)
关键词 周期解 存在稳定性 时滞抛物型系统 不动点理论 函数 delay periodic solution upper and lower solution parabolic system fixed point theorem existence and stability
  • 相关文献

参考文献4

  • 1何猛省.一类含时滞的反应扩散方程的周期解和概周期解[J].数学学报(中文版),1989,32(1):91-97. 被引量:23
  • 2Ying Dong Liu, Zheng Yuan Li,Qi Xiao Ye.The existence, Uniqueness and Stability of Positive Periodic Solution for Periodic Reaction-diffusion Systim[J].Acta Mathematicae Applicatae Sinica,2001,1:1-13.
  • 3Jianhong Wu.Theory and applications of partial functional differential equations[M].Applied Mathematical Sciences,Springer-Verlag,1997.
  • 4A hmad Shair and Lazer Alan C.Asymptotic Behaviour of Solutions of Periodic Competition Diffusion System[J].Nonlinear Anal,TMA,1989,13(3):263-284.

二级参考文献2

  • 1何猛省,数学物理学报,1989年,9卷,1期,1页
  • 2叶其孝,反应扩散方程引论,1985年

共引文献22

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部