期刊文献+

面向多峰值函数优化的人工免疫网络算法特性分析 被引量:2

Algorithm Analysis of the Artificial Immune Network for Multimodal Function Optimization
原文传递
导出
摘要 对用于多峰值函数的人工免疫网络算法进行了改进并分析了其特性。首先在给出基于人工免疫网络的多峰值函数优化算法及其流程的基础上,提出了一种克服早熟现象的改进方案;然后通过与克隆选择算法的数值对比实验,对改进后算法的计算结果加以分析,验证了该算法用于求解多峰值函数优化的有效性;最后重点讨论了算法主要参数对其求解性能的影响,得到了若干参考性结论,可为人工免疫网络计算提供指导。 An improved artificial immune network algorithm for multimodal function optimization along with its characteristic analysis is presented in this paper. Firstly, an artificial immune network algorithm for multimodal function optimization (opt-aiNet) as well as its implementation process is introduced. Based on that we proposed a revised version to overcome the premature phenomenon. Then performance of the improved algorithm is compared with CLONALG, a typical clonal selection algorithm, through some numerical experiments, and its advantages as well as the effectiveness in multimodal function optimization are verified. Finally, the influence of parameters on performance of the improved algorithm is discussed in detail and some valuable conclusions are reached, which can be used to guide artificial immune network computing.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2005年第1期17-24,共8页 Pattern Recognition and Artificial Intelligence
基金 高等学校博士点基金(No.20030487054)
关键词 多峰值函数优化 人工免疫网络 克隆选择 Opt-aiNet算法 Multimodal Function Optimization Artificial Immune Network Clonal Selection Opt--aiNet Algorithm
  • 相关文献

参考文献13

  • 1周明 孙树栋.遗传算法原理及应用[M].西安:西安交通大学出版社,2000..
  • 2肖人彬,王磊.人工免疫系统:原理、模型、分析及展望[J].计算机学报,2002,25(12):1281-1293. 被引量:209
  • 3Goldberg D E, Richardson J. Genetic Algorithms with Sharing for Muhimodal Function Optimization. In: Proc of the 2nd International Conference on Genetic Algorithms. Cambridge,USA, 1987, 41-49.
  • 4Beasley D, Bull DR, Bull R R, Martin R R. A Sequential Niche Technique for Multimodal Function Optimization. Evolution Computation, 1993, 1(2): 101-125.
  • 5Spears W M. Simple Subpopulation Schemes. In: Proc of the Conference on Evolutionary Programming. New Jersey, USA:World Scientific, 1994, 296- 307. http://www, cs. uwyo. edu/- wspears/papers/ep94, pdf.
  • 6Goldberg D E, Wang L. Adaptive Niching via Coevolutionary Sharing. In, Quagliarella D, Periaux J, Poloni C, Winter G,eds. Genetic Algorithms and Evolution Strategy in Engineering and Computer Science. West Sussex, UK: John Wiley & Sons, 1997, 21-38.
  • 7Ge Hong, Mao Z Y. Immune Algorithm. In: Proc of the 4th World Congress on Intelligent Control and Automation. Shanghai, China, 2002, 1784-1788.
  • 8de Castro L N, yon Zuben F J. Learning and Optimization Using the Clonal Selection Principle. IEEE Trans on Evolutionary Computation, Special Issue on Artificial Immune Systems,2003, 6(3): 239-251.
  • 9de Castro L N, yon Zuben F J. An Evolutionary Immune Network for Data Clustering. In: Proe of the 6th Brazilian Symposium on Neural Networks. Rio de Janeiro, Brazil, 2000, 84-89.
  • 10Burnet F M. The Clonal Selection Theory of Acquired Immunity. Cambridge, UK: Cambridge University Press, 1959.

二级参考文献59

  • 1HanJiawei Kamber M 范明等译.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 2Timmis J, Neal M, Hunt J. Artificial immune system for data analysis. Biosystems, 2000, 55(1-3):143-150
  • 3Timmis J, Neal M. A resource limited artificial immune sys tem for data analysis. Knowledge Based Systems, 2001, 14(3 -4): 121-130
  • 4Timmis J, Knight T. Artificial immunes system: Using the immune system as inspiration for data mining. In: Abbass H A, Sarker R A, Newton C S eds. Data Mining: A HeuristicApproach. Hershey : Idea Publishing Group, 2001. 209- 230
  • 5Ishiguro A, Ichikawa S, Uchikawa Y. A gait acquisition of a 6-legged robot using immune networks. In: Proc IEEE/RSJ/ GI International Conference on Intelligent Robots and Systems, Munich, Germany, 1994, 2:1034- 1041
  • 6Ishiguro A, Shirai Y, Kondo T et al. Immunoid: An architec ture for behavior arbitration based on the immune networks. In: Proc IEEE/RSJ International Conference on Intelligent Robots and Systems, Osaka, Japan, 1996. 1730-1738
  • 7Ishiguro A, Kuboshiki S, Ichikawa S. Gait coordination of hexapod walking robots using mutual-coupled immune net works. In: Proc IEEE International Conference on Evolution ary Computation, Perth, Australia, 1995. 672-677
  • 8Dasgupta D, Forrest S. Artificial immune systems in industrial applications. In: Proc 2nd International Conference on Intelli gent Processing and Manufacturing of Materials, Honolulu, 1999. 257-267
  • 9Smith D J, Forrest S, Perelson A S. Immunological memory is associative. In: Dasgupta ed. Artificial Immune Systems and their Applications. Berlin: Springer, 1998. 105-112
  • 10Burnet F M. Clonal selection and after. In: Bell G I, Perelson A S, Pimbley G H eds. Theoretical Immunology, New York: Marcel Dekker Inc. , 1978. 63-85

共引文献249

同被引文献19

  • 1钟将,吴中福,吴开贵,欧灵.基于人工免疫网络的动态聚类算法[J].电子学报,2004,32(8):1268-1272. 被引量:24
  • 2肖人彬.基于免疫计算的机构轨迹综合[J].计算机辅助设计与图形学学报,2004,16(6):812-818. 被引量:7
  • 3刘勇,肖人彬.机构轨迹生成理论研究进展[J].计算机辅助设计与图形学学报,2005,17(4):627-636. 被引量:15
  • 4NGUYEN Q C, ONG Y S, LIM M H. A probabilistic memetic frame- work[J]. IEEE Trans on Evolutionary Computation, 2009, 13 (3) :604- 623.
  • 5ONG Y S, LIM M H, CHEN Xian-shun. Research frontier: memetic computation-past,present & future [ J ]. IEEE Computational Intelli- gence Magazine,2010,5(2) :24-31.
  • 6WHITLEY D, GORDON V S, MATHIAS K. Lamarckian evolution, the Baldwin effect and function optimization [ C ]//Lecture Notes in Computer Science, vol 866. Berlin : Springer-Verlag, 1994 : 5-15.
  • 7GOLDBERG D E, RICHARDSON J. Genetic algorithms with sharing for multimodal function optimization[ C]//Proc of the 2nd Interna- tional Conference on Genetic Algorithms and Their Application. Hills- dale, NJ : L. Erlhaum Associates Inc. , 1987:41-49.
  • 8BEASLEY D, BULL D R, MARTIN R R. A sequential niche tech- nique for multimodal function optimization [ J]. Evolution Computa- tion.1993.1 (2) ,101-125.
  • 9LI J P, BALAZS M E, PARKS G T, et al. A species conserving ge- netic algorithm for multimodal function optimization [ J ]. Evolutionary Computation, 2002,10 ( 3 ) : 207- 234.
  • 10De CASTRO L N, Von ZUBEN F J. Learning and optimization using the clonal selection principle [ J]. IEEE Trans on Evolutionary Computation, 2002,6 ( 3 ) : 239 - 251.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部