期刊文献+

基于相对自相关序列MFCC特征的丢失数据带噪语音识别方法 被引量:1

Missing Data Speech Recognition in Noisy Environments Based on the Relative Autocorrelation Sequence MFCCs
原文传递
导出
摘要 提出了一种基于相对自相关序列(Relative Autocorrelation Sequences,RAS)MFCC(Mel-Frequency Ceps-tral Coefficient)特征的丢失数据带噪语音识别新方法。首先分析了环境噪声对RAS-MFCC的影响,提出了一种基于掩盖原理的不可靠分量检测方法;然后采用丢失数据(Missing data,MD)技术来消除畸变分量对识别过程的影响,实验结果表明,本文所提的识别方法可以在不同类型和信噪比的噪声环境中有效提高RAS-MFCC的识别率,并且其性能优于典型的基于滤波器组(Filter bank)语音特征的丢失数据语音识别方法。 A new scheme for noisy speech recognition by combining missing data technique and a robust speech feature based on RAS-MFCCs is presented. The influence of noises to the RAS-MFCCs is analyzed and a method for detecting the unreliable components is developed. Marginalisation approach is then used to eliminate the negative effect of the distorted components. Experimental results show that the proposed scheme can effectively improve the performance of the RAS-MFCCs under a wide range of SNR for different kinds of noises and be superior to the conventional missing data technique based on the filter bank features.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2005年第1期45-49,共5页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60172048) 华南理工大学自然科学青年基金(No.303E5041230)
关键词 语音识别 鲁棒语音特征 丢失数据技术 Speech Recognition Robust Speech Feature Missing Data
  • 相关文献

参考文献8

  • 1蒋文建,林耀荣,韦岗.基于响度特性加权的噪声下语音识别方法[J].模式识别与人工智能,2001,14(2):166-170. 被引量:7
  • 2Hermansky H. Perceptual Linear Predictive (PLP) Analysis of Speech. Journal of the Acoustical Society of America, 1990, 87(4): 1738-1752.
  • 3许超,曹志刚.用于抗噪声语音识别的谐振强度特征[J].清华大学学报(自然科学版),2004,44(1):22-24. 被引量:1
  • 4You K H, Wang H C. Robust Features for Noisy Speech Recognition Based on Temporal Trajectory Filtering of Short Time Autocorrelation Sequences. Speech Communication, 1999, 28:13-24.
  • 5Cooke M, Green P, Josifovski L, Vizinho A. Robust Automatic Speech Recognition with Missing and Unreliable Acoustic Data.Speech Communication, 2001, 34:267-285.
  • 6Luo Y, Du L M. Single Gauss Model Set-Based Data Imputation Method for Complex ASR Task. In: Proc of the International Symposium on Circuits and Systems. Bangkok, Thailand,2003, Ⅱ : 564-567.
  • 7Varga A, Steeneken H J M. Assessment for Automatic Speech Recognition: H. NOISEX-92: A Database and an Experiment to Study the Effect of Additive Noise on Speech Recogniiton Systems. Speech Communication, 1993, 12(3), 247-251.
  • 8Young S, etal. The HTK Book (for HTK Version 3.0). Cambridge, UK, Cambridge University Technical Services, 2000.

二级参考文献12

  • 1林耀荣.自适应滤波理论及其在回波消除中的应用研究:博士论文[M].华南理工大学,1999..
  • 2杨行峻,语音信号数字处理,1995年
  • 3陶擎天,音频声学测量,1986年
  • 4Bu L,IEEE Trans on SPeech and Audioprocessing,2000年,8卷,2期,105页
  • 5林耀荣,博士学位论文,1999年
  • 6Tang K S,IEEE Trans on Industrial Electronics,1998年,45卷,3期,481页
  • 7Young S, Evermann G, Kershaw D, et al. The HTK Book [EB/OL]. http://htk.eng.cam.ac.uk/docs/docs.shtml, 2002.
  • 8Mark John Francis Gales. Model-Based Techniques for Noise Robust Speech Recognition [D]. University of Cambridge, Gonville and Caius College, 1995.
  • 9McAulay R J, Quatieri T F. Speech analysis/synthesis based on a sinusoidal representation [J]. IEEE Trans on Acoustics, Speech, and Signal Processing, 1986, 8(4): 744-754.
  • 10Abu-Shikhah N, Deriche M. A Robust technique for harmonic analysis of speech [J]. Proc ICASSP'01 - Proceedings, 2001, (2): 877-880.

共引文献6

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部