摘要
The identification of marine source rocks in the Tarim Basin is debated vigorously. The intention of this paper is to investigate the asphaltenes in heavy oils from the Lunnan and Tahe oilfields and Well TD2 with ruthenium-ions-catalyzed oxidation technique (RICO), in order to explore its role in oil-oil and oil-source correlations. The RICO products included n-alkanoic acids, α, ω-di-n-alkanoic acids, branched alkanoic acids, tricyclic terpanoic acids, hopanoic acids, gammacerane carboxylic acid , regular sterane carboxylic acids and 4-methylsterane carboxylic acids. The n-alkyl chains and biomarkers bounded on the asphaltenes were of unsusceptibility to biodegradation. The distribution and absolute concentrations of n-alkanoic acids in the RICO products of heavy oils from the Lunnan and Tahe oilfields are different from those of Well TD2. The biomarkers bounded on the asphaltenes, especially steranes, have a distribution trend similar to that of the counterparts in saturates. The sterane carboxylic acids and 4-methylsterane carboxylic acids in the RICO products of heavy oils from the Lunnan and Tahe oilfields, dominated by C-{30} sterane and C-{31} 4-methylsterane carboxylic acids, respectively, are significantly different from those of the heavy oils of Well TD2, whose dominating sterane and 4|methylsterane carboxylic acids are C-{28} sterane and C-{29} 4-methylsterane acids, respectively. The RICO products of the asphaltenes further indicate that the Middle-Upper Ordovician may be the main source rocks for heavy oils from the Lunnan and Tahe oilfields.
The identification of marine source rocks in the Tarim Basin is debated vigorously. The intention of this paper is to investigate the asphaltenes in heavy oils from the Lunnan and Tahe oilfields and Well TD2 with ruthenium-ions-catalyzed oxidation technique (RICO), in order to explore its role in oil-oil and oil-source correlations. The RICO products included n-alkanoic acids, α, ω-di-n-alkanoic acids, branched alkanoic acids, tricyclic terpanoic acids, hopanoic acids, gammacerane carboxylic acid , regular sterane carboxylic acids and 4-methylsterane carboxylic acids. The n-alkyl chains and biomarkers bounded on the asphaltenes were of unsusceptibility to biodegradation. The distribution and absolute concentrations of n-alkanoic acids in the RICO products of heavy oils from the Lunnan and Tahe oilfields are different from those of Well TD2. The biomarkers bounded on the asphaltenes, especially steranes, have a distribution trend similar to that of the counterparts in saturates. The sterane carboxylic acids and 4-methylsterane carboxylic acids in the RICO products of heavy oils from the Lunnan and Tahe oilfields, dominated by C-{30} sterane and C-{31} 4-methylsterane carboxylic acids, respectively, are significantly different from those of the heavy oils of Well TD2, whose dominating sterane and 4|methylsterane carboxylic acids are C-{28} sterane and C-{29} 4-methylsterane acids, respectively. The RICO products of the asphaltenes further indicate that the Middle-Upper Ordovician may be the main source rocks for heavy oils from the Lunnan and Tahe oilfields.
基金
ThisresearchprojectwasgrantedbytheNational"95"ScienceandTechnologyResearchProject(GrantNo.99 111 01 03)
关键词
钌-离子催化氧化
沥青
重油
塔里木盆地
油源作用
ruthenium-ions-catalyzed oxidation (RICO)
asphaltene
oil-source correlation
oil-oil correlation
heavy oil
Tarim Basin
biomarker