期刊文献+

镁基储氢复合材料放氢过程相转变速率研究 被引量:2

phase transformation rate study of Mg-based hydrogen storage material during desorption
下载PDF
导出
摘要 用机械合金化方法 ,在充氢球磨条件下 ,经不同时间球磨 ,制备Mg Ni MnO2 储氢材料。用自行研制的储氢性能测试装置对这种材料放氢过程中的相转变速率进行了测试 ,并与经相同的球磨工艺制备的Mg Ni、Mg MnO2 储氢材料的储氢性能进行了比较。试验结果表明 :球磨时间对Mg Ni MnO2 储氢材料的粒度有影响 ;颗粒大小对放氢过程的相转变速率有影响。颗粒越小 ,相转变速率的相对峰值越大 ,完成相变所用的时间相对要短 ;Ni与MnO2 同时催化的镁基储氢材料放氢性能明显高于Ni或MnO2 单独催化的储氢材料。 Through mechanical alloying, the Mg-Ni-MnO2 hydrogen storage material was prepared under hydrogen atmosphere, and the hydrogen storage properties measuring apparatus designed by ourselves is used to study the phase transformation velocity of this material during desorption; and the comparison of the dehydriding properties was made between Mg-Ni-MnO2 and Mg-Ni, Mg-MnO2 hydrogen storage material prepared by the same milling process. The result shows that: milling time has effect on the particle size of Mg-Ni-MnO2 hydrogen storage material; the longer the milling time, the less the particle size. The particle size has effect on the phase transformation rate during desorption; the less the particle size, the bigger the relative peak value of phase transformation rate is, and the time of finishing phase transformation become shorter relatively. The dehydriding properties of Mg-based hydrogen storage material catalyzed by Ni and MnO2 together is more excellent markedly than that catalyzed by Ni or MnO2 respectively.
出处 《粉末冶金技术》 EI CAS CSCD 北大核心 2005年第1期32-35,共4页 Powder Metallurgy Technology
关键词 相转变 MNO2 球磨工艺 制备 自行研制 催化 球磨时间 储氢材料 储氢性能 机械合金化方法 mechanical alloying hydrogen storage material particle size phase transformation rate
  • 相关文献

参考文献11

  • 1王方香,闫晓琦,高学平,袁华堂,宋德瑛.镁基复合储氢材料[J].化学通报,2002,65(2):85-89. 被引量:20
  • 2Zaluska A, Zaluski L, Strom-Olsen J O. Nanocrystalline magnesium for Hydrogen storage. Journal of Alloys and Compounds, 1999,288:217~225.
  • 3Zaluski L, Zaluska A, Tessier P, et al. Catalytic Effect of Pd on Hydrogen Aborption in Mechanically Alloyed Mg2Ni, LaNi5 and FeTi. Journal of Alloys and Compounds, 1995,217: 295~300.
  • 4Liang G, Huot J, Boily S, et al. Hydrogen desorption kinetics of a mechanically milled MgH2 + 5at. % V nanocomposite. Journal of Alloys and Compounds, 2000,305: 239 ~ 245.
  • 5liang G, Huot J, Baily S, et al. Hyrogen storage in mechanically milled Mg-LaNi5 and MgH2-LaNi5 composite. Journal of Alloys and Compounds,2000,297:261~265.
  • 6Liang Guoxian, Wang Erde, Fang Shoushi. Hydrogen Abrogen Absorption and Desorption Characteristics of Mechanically Milled Mg35wt% FeTi1.2 Powders. Journal of Alloys Compounds, 1995,223:111~114.
  • 7Zaluska A, Zaluski L, Strom-Olsen J O. Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2Ni. Journal of Alloys and Compounds, 1999,289:197 ~ 206.
  • 8Peshev P, Khrussanova M, Chakarov D, et al. Surface Composition of Mg-TiO2 Mixture for Hydrogen Storage Prepared by Different Method. Mat Res Bull. 1989, 24:207~212.
  • 9Khrussanova M, Terzieva M, eshev P. et al. Hydriding of Mechanical Alloying Mixtures of Mg and MnO2 and NiO. Mat Res. Bull,1991, 26: 1291~ 1298.
  • 10Wang P, Wang A L, Wang Y M, et al. Decomposition behavior of MgH2 prepared by reaction ball-milling, Scripta materialia, 2000,43(2): 83~87.

二级参考文献10

  • 1[3]Nomura K, Akida E, Ono S. Kinetics of the reaction between Mg2Ni and hydrogen[J]. International Journal Hydrogen Engineer, 1981, 6(31): 295-299.
  • 2[5]Kapischke J, Hapke J. Measurement of the pressure-composition isotherms of high-temperature and low-temperature metal hydrides[J]. Experimental Thermal and Fluid Science 1998, 18(2): 70-80.
  • 3[6]McCarty R D. Hydrogen: Its Technology and Implications(Vol.Ⅲ, Hydrogen Propertied) [M]. CRC Press Inc. 1975.
  • 4[7]Miyamoto M, Yamaji K, Nakata Y. Journal reaction kinetics of LaNi5 less-common metals[J]. 1983, 89: 111-114.
  • 5[8]Bohmhammel K, Chris B, Wolf G. Isobaric and isothermal DSC measurements of metal-hydrogen system[J]. Thermachimica Acta 1996, 271: 67-73.
  • 6[9]Wang P, Wang A M, Wang Y L, et al. Decomposition behavior of MgH2 prepared by reaction ball-milling[J]. Scripta Materialia, 2000, 43(2): 83-87.
  • 7[10]Benham M J, Ross P K. Experimental determination of absorption isoterms by computer-controlled gravimetric analysis[J]. Zeits Physic Chemical Neue Folge, 1989, 163: 25-28.
  • 8[11]Strobel R, Jorissen L, Schliermann T, et al. Hydrogen adsorption on carbon materials[J]. Journal of Power Sources, 1999, 84(2): 221-224
  • 9Daruaudeny J P,Darriet B,Pezat M. International Journal of Hydrogen Energy . 1983
  • 10Li L Q,Akiyama T,Yagi J. Intermetallics . 1999

共引文献26

同被引文献25

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部