摘要
为了分析超高速撞击过程的宏观现象和内在机理,对 9.53 mm铝球以6.64 km/s的速度撞击2 2 mm厚的铝靶的SPH仿真结果进行了量化分析。结果表明:采用SPH方法以及Steinberg弹塑性模型和Mie Grüneisen状态方程,可获得与试验相符的仿真结果;球形破片开坑或穿孔直径遵循初始快速增加、然后缓慢增加,直至稳定的变化规律;破片/靶板界面的最大撞击压力比材料强度大两个量级以上;靶板阻抗力最大值发生在破片最大直径侵入靶板时刻;碎片云的运动过程具有自相似演化特征,其运动范围不会超出碎片云的包络圆锥范围。
The hypervelocity impact simulation result is studied about 9.53 mm Al-shpere impacting 2.2 mm Al-target at 6.64 km/s to analyze the macro phenomena. It is shown that the SPH simulations with Steinberg material model and Mie-Grüneisen EOS are in accordance with the experimental results. The diameter of the hole initially increases, then slow increases, and finally reaches a stable value. The maximum pressure at the interface between the sphere and the plate is two times higher than aluminium strength. The maximum resistance appears at the moment when the maximum diameter of sphere just intrudes the plate. Debris cloud evolves following self-similar law, and the particles of debris cloud move only inside the so-called evolving cone.
出处
《爆炸与冲击》
EI
CAS
CSCD
北大核心
2005年第1期47-53,共7页
Explosion and Shock Waves
基金
中国国家博士后科学基金项目(2004035267)