期刊文献+

GROWTH OF SOLUTIONS OF THREE ORDER DIFFERENTIAL EQUATIONS

GROWTH OF SOLUTIONS OF THREE ORDER DIFFERENTIAL EQUATIONS
下载PDF
导出
摘要 In this paper,the precise estimation of the order and hyper-order of solutions of a class of three order homogeneous and non-homogeneous linear differential equations are obtained.The results of M.Ozawa(1980),G.Gundersen(1988) and J.K.Langley(1986) are improved. In this paper,the precise estimation of the order and hyper-order of solutions of a class of three order homogeneous and non-homogeneous linear differential equations are obtained.The results of M.Ozawa(1980),G.Gundersen(1988) and J.K.Langley(1986) are improved.
作者 ChenZongxuan
机构地区 Dept.ofMath.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2005年第1期35-44,共10页 高校应用数学学报(英文版)(B辑)
基金 theNationalNaturalScienceFoundationofChina(10161006)andtheNaturalScienceFoundationofGuangdongProvince(04010360)
关键词 differential equation entire function hyper-order. differential equation, entire function, hyper-order.
  • 相关文献

参考文献17

  • 1Amemiya I, Ozawa M. Non-existence of finite order solutions of w"+e^-z w' +Q (z)w = 0, Hokkaido Math J,1981,10:1-17.
  • 2Chen Zongxuan,Yang Chungchun. Some further results on the zeros and growth of entire solutions of second order linear differential equations,Kodai Math J, 1999,22:273-285.
  • 3Chen Zongxuan. The growth of solutions of the differential equation f"+e^-z f^t+Q(z)f=0,Science in China Ser A, 2001,31 : 775-784 (in Chinese).
  • 4Frei M. Uber die subnormalen losungen der differentialgleichung w"+e^-z w'+ (konst.)w = 0,Comment Math Heir, 1962,36 : 1-8.
  • 5Gundersen G. On the question of whether f"+e^-z f'+B(z)f=0 can admit a solution f 0 of finite order, Proc Roy Soc Edinburgh, 102A, 1986,9-17.
  • 6Gundersen G. Finite order solutions of second order linear differential equations,Trans Amer Math Soc, 1988,305 : 415-429.
  • 7Gundersen G. Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates ,J London Math Soc, 1988,37(2):88-104.
  • 8Hille E. Ordinary Differential Equations in the Complex Domain,New York.Wiley, 1976.
  • 9Hayman W. Meromorphic Function ,Oxford :Clarendon Press, 1964.
  • 10Hayman W. The local growth of power seriesta survey of the Wiman-Valiron method,Canad Math Bull, 1974,17:317-358.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部