期刊文献+

F/10和G/11木聚糖酶家族的不同热稳定性机制 被引量:9

Different Thermostable Mechanisms of F/10 and G/11 Xylanase Family
下载PDF
导出
摘要 应用生物信息学方法分析了木聚糖酶初级序列中20种氨基酸同其最适温度之间的关系,发现在F/10家族中有正相关作用的氨基酸是W,负相关作用的是 A,D,H,S;理论上最高最适温度是119 8 ℃在G/11家族中有正相关作用的氨基酸是L,D,P,Y,负相关作用的是 H;理论上最高最适温度为105 6 ℃.惊奇地发现在不同家族中 D起不同的作用,这只能从它们各自不同的蛋白质空间结构上进行解释.从初级序列基础上证明了木聚糖酶的不同蛋白质家族有不同的热稳定性机制. In this article, bioinformatics method was used to analyze the relationship between primary sequence and the optimum temperature of xylanase. The contents of 20 residues were multivariatly regressed with the T_(opt) of xylanase, and it was found that, in F/10 the positively correlated residue is W and the negative residues are A, D, H, and S; the calculated maximum T_(opt) is 119.8 ℃. Whereas in G/11 the positively correlated residues are L, D, P, and Y, the negative residue is H; the calculated maximum T_(opt) is 105.6 ℃. The surprising finding of different effect of D can explained by structures of (α/β)_( 8) of F/10 family xylanase and β-jelly roll of G/11 family xylanase. It was demonstrated that different families of xylanase have inconsistent mechanisms thermostable.
出处 《无锡轻工大学学报(食品与生物技术)》 CSCD 北大核心 2005年第1期52-58,共7页 Journal of Wuxi University of Light Industry
关键词 木聚糖酶 热稳定性 机制 蛋白质工程 氨基酸 蛋白质结构 xylanase, thermostability, mechanism, protein engineering, amino acid, protein structure
  • 相关文献

参考文献44

  • 1Maat J, Roza M, Verbakel J, etal. Xylans and Xylanases[M]. New York: Elsevier, 1992, 171-186.
  • 2Biely P. Microbial xylanolytic systems [J]. Trends Biotechnol, 1985, 3: 286-290.
  • 3Wong K K Y, Saddler J N. Xylan and xylanases[M]. New York: Elsevier, 1992. 171-187.
  • 4Viikari L, Kantellinen A, Sundquist J, et al. Xylanases in bleaching: from an idea to the industry [J]. FEMS Microbiol Rev, 1994, 13: 335-350.
  • 5Kumar P R, Eswaramoorthy S, Vithayathil P J, et al. The tertiary structure at 1.59 resolution and the proposed amino acid sequence of a family-11 xylanase from the thermophilic fungus Paecilomyces varioti Bainier [J]. J Mol Biol, 2000,295: 581-593.
  • 6Argos P, Rossmann M G, Grau U M, etal. Thermal stability and protein structure [J]. Biochemistry, 1979, 18:5698-5703.
  • 7Matthews B, Nicholson H, Becktel W. Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding [J]. Pro Natl Acad Sci USA, 1987, 84: 6663-6667.
  • 8Chan M K, Mukund S, Kletzin A, et al. Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase [J]. Science, 1995, 267: 1467-1469.
  • 9Sakon J, Adney W S, Himmel M E, et al. Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose[J]. Biochemistry, 1996, 35: 10648-10660.
  • 10Ishikawa K, Okumura M, Katayanagi K, et al. Crystal structure of ribonuclease H from Thermus thermophilus HB8 refined at 2.8 resolution[J]. J Mol Biol, 1993, 230: 529-542.

同被引文献199

引证文献9

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部