摘要
本文讨论了代数稳定的多步Runge-Kutta方法求解常微分方程初值问题时可达到的收剑阶.所获阶结果为Runge—Kutta方法的相应结果的推广.
In this paper we present some order properties of algebraically stable multistep Runge-Kutta methods for solving initial valuo problems in ordinary differential equations. The order results for multistep Runge-Kutta methods obtained in this paper extend those obtained by Butcher[5], Burrage[1], Burrage and Chipman[3],and Wanner and Hairer[4],and can be regarded as a extension of the well known order results for Runge-Kutta methods.
出处
《湘潭大学自然科学学报》
CAS
CSCD
1994年第3期20-23,共4页
Natural Science Journal of Xiangtan University
基金
国家自然科学基金
关键词
数值分析
代数稳定
收敛阶
多步R-K法
numerical analysis/multistep Runge-Kutta methods
algebraic stability
convergence order