期刊文献+

无穷迭代函数系统的遍历定理 被引量:2

Ergodic Theorem for Infinite Iterated Function Systems
下载PDF
导出
摘要  度量空间的压缩映射的一个集合称为一个迭代函数系统· 凝聚迭代函数系统可以被看成无穷迭代函数系统· 研究了紧度量空间上的无穷迭代函数系统· 利用Banach极限的特性和均匀压缩性,证明了紧度量空间上无穷迭代函数系统的随机迭代算法满足遍历性· 于是。 A set of contraction maps of a metric space is called an iterated function systems. Iterated function systems with condensation can be considered infinite iterated function systems.Infinite iterated function systems on compact metric spaces were studied. Using the properties of Banach limit and uniform contractiveness it was proved that the random iterating algorithms for infinite iterated function systems on compact metric spaces satisfy ergodicity. So the random iterating algorithms for iterated function systems with condensation satisfy ergodicity, too.
出处 《应用数学和力学》 EI CSCD 北大核心 2005年第4期426-430,共5页 Applied Mathematics and Mechanics
关键词 迭代函数系统(IFS) 不变测度 遍历定理 随机迭代算法 iterated function system invariant measure ergodic theorem random iterating algorithm
  • 相关文献

参考文献6

  • 1Barnsley M. Fractals Everywhere [M]. New York: Academic Press, 1988.
  • 2马东魁,周作领.迭代函数系统的遍历性质——Elton定理的改进[J].应用数学,2001,14(4):46-50. 被引量:5
  • 3Elton J.An ergodic theorem for iterated maps[ J ] . Ergodic Theory and Dynamical Systems , 1987 , 7(4) :481-488.
  • 4Forte B, Mendivil F. A classical ergodic property for IFS: A simple proof[ J ]. Ergodic Theory and Dynamical Systems, 1998,18(3) :609-611.
  • 5Mendivil F. A generalization of IFS with probability to infinitely many maps [ J ]. Rocky Mountain Journal of Mathematics , 1998,28(3): 1043-1051.
  • 6Conway John. A Course of Functional Analysis[M]. GTM 96, Springer-Verlag, 1990.

二级参考文献8

  • 1Elton J.An ergodic theorem for iterated maps[].Ergodic Theory and Dynamical Systems.1987
  • 2Hutchinson J E.Fractals and Self -similarity[].Indiana University Mathematics Journal.1981
  • 3Conway J.A course in Functional Analysis[]..1990
  • 4Walters P.An Introduction to Ergodic theory[]..1982
  • 5Peterson K.Ergodic theory[]..1983
  • 6Forte B,Mendivil F.A classical ergodic property for IFS: a simple proof[].Ergodic Theory and Dynamical Systems.1998
  • 7Barnsley M.Fractals Everywhere[]..1988
  • 8Rudin W.Real and Complex Analysis[]..1966

共引文献4

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部