期刊文献+

基于核函数的雷达一维距离像目标识别 被引量:9

Range Profile Recogniton of Radar Target Based on the Kernel-Based Methods
下载PDF
导出
摘要 该文分析了基于核函数的三大模式识别方法(支持向量机、非线性主分量分析、非线性判别分析)的分类机理,并将其应用于雷达一维距离像目标识别中。用3种飞机实测雷达距离像数据样小进行识别研究,结果表明对于雷达目标距离像识别,支持向量机方法较其它两种方法更为有效,并对实验结果给出了合理的解释。 The classification mechanism of the kernel-based methods in pattern recognition, i.e. SVMs, nonPCA, and nonLDA, are analyzed in detail in this paper. The range profiles of radar target are recognized by the kernel-based methods. The results of the simulation on three radar target show that SVMs is more effective than nonPCA and nonLDA, and a sound explanation for the results is given too.
出处 《电子与信息学报》 EI CSCD 北大核心 2005年第3期462-466,共5页 Journal of Electronics & Information Technology
关键词 雷达目标识别 基于核函数的方法 支持向量机 非线性主分量分析 非线性判别分析 Radar target recognition, Kernel-based methods, Support vector machines, Nonlinear principal component analysis, Nonlinear discriminant analysis
  • 相关文献

参考文献11

  • 1张莉,周伟达,焦李成.用于一维图像识别的支撑矢量机方法[J].红外与毫米波学报,2002,21(2):119-123. 被引量:16
  • 2李映,焦李成.基于核Fisher判别分析的目标识别[J].西安电子科技大学学报,2003,30(2):179-182. 被引量:37
  • 3田盛丰.基于核函数的学习算法[J].北方交通大学学报,2003,27(2):1-8. 被引量:37
  • 4Vapnik N. The Nature of Statistical Learning Theory. New York:Springer Verlag, 1995:1 - 188.
  • 5Scholkopf B, Smola A, Mtller K R. Nolinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998,10(5):1299- 1319.
  • 6Sebastian Mika, Gunnar Ratsch, Jason Weston, Scholkopf B, Müller K R. Fisher discriminant analysis with kernels. Neural Networks for Signal Processing IX. New York: IEEE Press, 1999:41 - 48.
  • 7Xu J H, Zhang X G, Ci Y D. Kernel neuron and its training algorithm. In: Proc. of 8thICNIP2001, Shanghai, P.R.China, 2001,2:861 - 866.
  • 8Osuna E, Freund R, Girosi F. Training support vector machines,an application to face detection. In: Proc.of CVPR'97, Puerto Rico, 1997: 130- 136.
  • 9Sakano H, Mukawa N. Kernel mutual subspace method for robust facial image recognition. In: Proc. of 4th KES, Brighton, UK,2000, vol.1: 245 - 248.
  • 10Joachims T. Text categorization with support vector machines:learning with many relevant features. In: Proc. of the European Conf. on Machine Learning. Berlin, 1998:137 - 142.

二级参考文献38

  • 1边肇祺.模式识别[M].北京:清华大学出版社,1998..
  • 2Müller K-R Smola A Rtsch G et al In: Schlkopf B Burges C J C Smola A J. Eds.Predicting time Series with Support vector machines[A].In: Schlkopf B, Burges C J C, Smola A J. Eds.Advances in Kernel Methods-Support Vector Learning[C].MA:MIT Press,1999.243-254.
  • 3Müller K-R Mika S Rtsch G et al.An Introduction to Kernel-Based Learning Algorithms[J].IEEE Transactions on Neural Networks,2001,12(2):181-201.
  • 4Schlkopf B Smola A Müller K-R.Nonlinear Component Analysis as a Kernel Eigenvalue Problem[J].Neural Computation,1998,10:1299-1319.
  • 5Cristianini N, Shawe-Taylor J. An Introduction to Support Vector machines[ M]. Cambridge, UK : Cambridge University Press, 2000.
  • 6Muller K-R, Mika S, Ratsch G, et al. An Introduction to Kernel-Based Learning Algorithms[J]. IEEE Transactions on Neural Networks, 2001,12(2) : 181 - 201.
  • 7Vapnik V N. The Nature of Statistical Learning Theory[M]. NY. Springer, 1995.
  • 8Scholkopf B, Platt J C, Shawe-Taylor J, et al. Estimating the Support of a High-dimensional Distribution[ R]. Technical Report MSR-TR-99-87, Microsoft Research, 1999.
  • 9Tax D, Duin R. Data Domain Description by Support Vectors[A]. In. Verleysen M.Ed. D. Proc. ESANN[C]. Brussels:Facto Press, 1999, 251 - 256.
  • 10Ben-Hur A, Horn D, Siegelmann H T, et al. Support Vector Clustering[J]. Journal of Machine Learning Research,2001,2:125-137.

共引文献85

同被引文献63

引证文献9

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部