摘要
该文分析了基于核函数的三大模式识别方法(支持向量机、非线性主分量分析、非线性判别分析)的分类机理,并将其应用于雷达一维距离像目标识别中。用3种飞机实测雷达距离像数据样小进行识别研究,结果表明对于雷达目标距离像识别,支持向量机方法较其它两种方法更为有效,并对实验结果给出了合理的解释。
The classification mechanism of the kernel-based methods in pattern recognition, i.e. SVMs, nonPCA, and nonLDA, are analyzed in detail in this paper. The range profiles of radar target are recognized by the kernel-based methods. The results of the simulation on three radar target show that SVMs is more effective than nonPCA and nonLDA, and a sound explanation for the results is given too.
出处
《电子与信息学报》
EI
CSCD
北大核心
2005年第3期462-466,共5页
Journal of Electronics & Information Technology
关键词
雷达目标识别
基于核函数的方法
支持向量机
非线性主分量分析
非线性判别分析
Radar target recognition, Kernel-based methods, Support vector machines, Nonlinear principal component analysis, Nonlinear discriminant analysis