期刊文献+

建立在一般结构Gauss网络上的分布估计算法 被引量:10

Estimation of Distribution Algorithm Based on Generic Gaussian Networks
下载PDF
导出
摘要 提出了一种建立在一般结构Gauss网络上的分布估计算法。一方面,它无需进行Gauss网络结构的学习,从而大大减少了计算量;另一方面,一般结构Gauss网络不是近似网络,因而可获得精度很高的联合概率密度函数。针对该网络,采用了一种无需计算条件概率密度函数的产生样本方法,有效地减少了网络参数学习的计算开销。实验结果表明,与已有建立在非一般结构Gauss网络上的高阶分布估计算法相比,本文算法具有更高的稳定性和更强的寻优能力。 Estimation of Distribution Algorithms (EDAs) available in continuous domains are based on non-generic Gaussian networks. The computational cost for learning this kind of networks is very great, moreover the low accuracy of the joint pdf will be resulted because the greedy algorithm is used to learn the Gaussian networks. To overcome these disadvantages, an Estimation of Distribution Algorithm based on generic Gaussian Networks (GN-EDA) is presented. It leads to the low computational cost by no structure learning of Gaussian networks. In the meanwhile, a generic Gaussian network is not an approximate one, so the joint pdf is of high accuracy. Due to an effective sampling is adopted, the computational cost for parameters learning is great reduced. The experimental results show that GN-EDA achieves a more stable performance and a stronger ability in searching the global optima.
出处 《电子与信息学报》 EI CSCD 北大核心 2005年第3期467-470,共4页 Journal of Electronics & Information Technology
基金 国家自然科学基金重点(60133010)资助课题
关键词 进化计算 分布估计算法 Gauss网络 Evolutionary computation, Estimation of distribution algorithm, Gaussian networks
  • 相关文献

参考文献11

  • 1张尧庭.多元统计分析引论[M].北京:科学出版社,1999.35-46.
  • 2林亚平.概率分析进化算法及其研究进展[J].计算机研究与发展,2001,38(1):43-49. 被引量:27
  • 3Baluja S. Population-based incremental learning: A method for integrating genetic searching based function optimization and competing learning. Carnegie Mellon University, CMU Tech. Rep.CMU-CS-94-163: 1994.
  • 4Muhlenbein H. The equation for response to selection and its use for prediction. Evolutionary Computation, 1998, 5(3): 303 - 346.
  • 5De Bonet J S, Isbell C L, Viola P. MIMIC: Finding optima by estimating probability density. Advances in Neural Information Processing System, Cambridge: The MIT Press, 1997, Vol.9:424 - 431.
  • 6Peliken M, Muhlenbein H. The bivariate marginal distribution algorithm, in R. Roy, T. Furnhashi, P. K. Chandhery. eds.,Advance in Soft Computing Engineering Design and Manufacturing, London: Springer-Verlag, 1999:521 - 535.
  • 7Pelikan M, Goldberg D E, Cantu-Paz E. BOA: the Bayesian optimization algorithm. Proceeding of the Genetic and Evolutionary Computation Conference, Orlando: Morgan Kaufmann, 1999:525 - 532.
  • 8Larranga P, Etxeberria R, Lozano A, J. Pefia M. Optimization by learning and simulation of Bayesian and Gaussian networks.Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program, Las Vegas: Morgan Kaufmann,2000:201 - 204.
  • 9Zhang Q F, Muhlenbein H. On convergence of a class of optimization algorithms using estimation of distribution, 2000-11.Available at http://privatewww. essex.ac. uk/-qzhang.
  • 10钟伟才,刘静,刘芳,焦李成.基于Kalman滤波的Helmholtz机进化算法[J].电子与信息学报,2004,26(8):1190-1195. 被引量:1

二级参考文献42

  • 1[1]Holland J H. Adaptation in Natural and Artificial Systems. Ann Arbor: Michigan Press, 1975
  • 2[2]Goldberg D E. Genetic algorithms in search, optimization, and machine learning. Reading, MA: Addison-Wesley, 1989
  • 3[3]Harik G, Goldberg D E. Linkage learning. In: Belew R et al eds. Foundations of Genetic Algorithms 4. San Mateo, CA: Morgan Kaufmann, 1996
  • 4[4]Muehlenbein H. Evolutionary algorithms: Theory and applications. RWCP Theoretical Foundation GMD Laboratory, Tech Rep: GMD-AS-GA-94-02, 1994
  • 5[5]Harik G. Linkage Learning via probabilistic modeling in the ECGA. University of Illinois at Urbana-Champaign, IlliGAL Rep: 99010, 1999
  • 6[6]Goldberg D E. A meditation on the application of genetic algorithms. University of Illinois at Urbana-Champaign, IlliGAL Rep:98003, 1998
  • 7[7]Kargupta H. Revisiting GEMGA: Scalable evolutionary optimization through linkage learning. In: Proc of IEEE Int'l Conf on Evolutionary Computation. Piscataway, NJ: IEEE Press, 1998
  • 8[8]Harik G et al. The compact genetic algorithm. In: Proc of the 1998 IEEE Conference on Evolutionary Computation. Piscataway, NJ: IEEE Service Center, 1998. 523~528
  • 9[9]Pelikan M, Muehlenbein H. Marginal distributions in evolutionary algorithms. In: Proc of the Int'l Conf on Genetic Algorithm Mendel'98 Brno, 1998. 90~95
  • 10[10] Knjazew D, Goldberg D E. OMEGA-Ordering messy GA: Solving permutation problems with the fast messy genetic algorithm and random. University of Illinois at Urbana-Champaign, IlliGAL Rep: 000004, 2000

共引文献65

同被引文献84

引证文献10

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部