摘要
导出了电流不连续模式下峰值电流控制型 Boost PFC变换器的离散映射方程。对线周期内的 fast-scale 不稳定现象进行了数值模拟,并对 fast-scale 不稳定区域复杂的非线性行为(例如,倍周期分岔和混沌现象)进行了分析。通过对系统的 Jacobian 矩阵特征值轨迹的分析,定位了周期 1 到周期 2的倍周期分岔点,解析分析与数值结果相吻合。解析分析方法不仅有助于系统电路参数的设计,同时也给系统稳定域边界的预测提供了一种有效的途径。
Iterative maps are derived to describe the nonlinear dynamics of a peak current-programmed power- factor-correction (PFC) boost converter in a discontinuous mode. This discrete mode is used to examine the fast-scale instability problem for some intervals within a line cycle. Computer simulations and analysis reveal the complex nonlinear behavior: bifurcations and chaos phenomena in the fast-scale instability region of the system. With the help of the loci of eigenvalues of a Jacobian matrix, the location of period-doubling point is investigated in detail, which is useful to the design of practical circuit parameters and also provides an effective approach to predict the stable boundary of the system,and the theoretical analysis agrees with the results of the numerical simulation.
出处
《中国电机工程学报》
EI
CSCD
北大核心
2005年第5期61-67,共7页
Proceedings of the CSEE
基金
高等学校重点实验室访问学者资助。