期刊文献+

Microbial Development in Soils Under Intensively Managed Bamboo (Phyllostachys praecox) Stands 被引量:3

Microbial Development in Soils Under Intensively Managed Bamboo (Phyllostachys praecox) Stands
下载PDF
导出
摘要 Phyllostachys praecox C. D. Chu et C. S. Chao, a favored bamboo shoot species, has been widely planted in recent years. Four stands with different historical management practices were selected for this study to understand the evolution of soil microbial ecology by determining the effects of a new mulching and heavy fertilization practice on soil quality using microbiological parameters. Compared with the traditional practice (index 1), microbial biomass carbon (MBC) and soil microbial respiration carbon (MRC) with the new management practice significantly decreased (P < 0.01 and P < 0.05,respectively) with 1-2 years of mulching (index 2) and then for continued mulching significantly increased (P < 0.05). The ratios of MBC/TOC (total organic carbon) and MRC/TOC also significantly diminished (P < 0.05) with mulching. The average well color development (AWCD) and Shannon index decreased with mulching time, and the significant decrease(P < 0.05) in Shannon index occurred from index 2 to index 3. The results from a principal components analysis (PCA)showed that the scores of the first principal component for indexes 1 and 2 were significantly larger (P < 0.05) than soils mulched 3-4 years or 5-6 years. Also, the second principal component scores for index 1 were larger than those for index 2, suggesting that the ability of soil microorganisms to utilize soil carbon was decreasing with longer use of the new management practice and causing a deterioration of soil biological properties. Phyllostachys praecox C. D. Chu et C. S. Chao, a favored bamboo shoot species, has been widely planted in recent years. Four stands with different historical management practices were selected for this study to understand the evolution of soil microbial ecology by determining the effects of a new mulching and heavy fertilization practice on soil quality using microbiological parameters. Compared with the traditional practice (index 1), microbial biomass carbon (MBC) and soil microbial respiration carbon (MRC) with the new management practice significantly decreased (P < 0.01 and P < 0.05, respectively) with 1-2 years of mulching (index 2) and then for continued mulching significantly increased (P < 0.05). The ratios of MBC/TOC (total organic carbon) and MRC/TOC also significantly diminished (P < 0.05) with mulching. The average well color development (AWCD) and Shannon index decreased with mulching time, and the significant decrease (P < 0.05) in Shannon index occurred from index 2 to index 3. The results from a principal components analysis (PCA) showed that the scores of the first principal component for indexes 1 and 2 were significantly larger (P < 0.05) than soils mulched 3-4 years or 5-6 years. Also, the second principal component scores for index 1 were larger than those for index 2, suggesting that the ability of soil microorganisms to utilize soil carbon was decreasing with longer use of the new management practice and causing a deterioration of soil biological properties.
出处 《Pedosphere》 SCIE CAS CSCD 2005年第1期33-40,共8页 土壤圈(英文版)
基金 ProjectsupportedbytheNationalNaturalScienceFoundationofChina(No.30271072)theNaturalScienceFoundationofZhejiangProvince(No.301250).
关键词 microbial biomass carbon microbial functional diversity microbial respiration carbon Phyllostachys praecox SOIL 微生物 碳含量 功能差异 碳呼吸 土壤学
  • 相关文献

参考文献7

二级参考文献32

共引文献358

同被引文献38

引证文献3

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部