摘要
域F上的所有m×n矩阵记为F(m×n),域F上的所有n×n可逆矩阵构成的乘群,称为一般线性群,记为GLn(F),当F是无限可列数域时,本文证明了F(m×n)和GLn(F)上的连通Cayley图是无限连通的,从而可Hamilton分解.
This paper conside two class of Cayley graphs of all m×n matrixes F(m×n) on the general linear groups GLn (F) over infinitely countable number field. Following results are obtained:(i) The Cayley. graphs on F(m×n) or GLn (F) are infinitely connected.(ii) The Cayley graphs on F(m×n) or CLn (F) can be decomposed into any combination of one-way and two-way infinite Hamiltonian paths.
出处
《新疆大学学报(自然科学版)》
CAS
1994年第2期19-21,共3页
Journal of Xinjiang University(Natural Science Edition)
关键词
CAYLEY图
无限连通
哈密顿分解
Cayley yraph infinitely connected Hamiltonian decomposition