期刊文献+

基于SCHMM/ANN噪声背景下的语音识别系统设计 被引量:2

Speech recognition system based on SCHMM/ANN in noisy environment
下载PDF
导出
摘要 语音识别系统一般是将安静环境下训练得到的参数用于实际环境中, 当实际环境是安静的,语音识别系统的工作是令人满意的,然而,当实际环境中有噪声存在时,识别系统的性能就会下降.文中提出将自组织特征映射神经网络与半连续隐马尔可夫模型相结合,训练出适应噪声的隐马尔可夫模型的新方法.把该模型应用于小词汇量的孤立词语音识别系统.实验表明,该模型适合于对噪声背景下的语音进行识别.同传统的HMM模型相比,该模型具有更好的抗噪鲁棒性,在信噪比较低的情况下(2~12dB),识别率比传统HMM模型有明显提高. Speech recognition systems work in practical environments using parameters that were trained in a quiet environment. The system performance is satisfactory when the environment is also quiet, but in a noisy environment, the performance degrades quickly. A hybrid model method was developed combining self-organizing feature mapping neural network (SOFMNN) and semi-continuous hidden markov model (SCHMM) to train noise by adapting HMM. The model trained by this method was used in an independent small size vocabularies recognition system. Experiments show this model is conformable to recognize speech in a noisy environment. Compared with the traditional HMM, this model has better noisy robustness. If the signal-to-noise ratio (SNR) is low (2-12 dB), the correct recognition rate increased distinctly.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2005年第1期119-122,共4页 Journal of Harbin Engineering University
基金 哈尔滨市科学研究基金资助项目(2003AFQXJ053).
关键词 语音识别 半连续隐马尔可夫模型 自组织特征映射神经网络 噪声 Acoustic noise Estimation Markov processes Mathematical models Neural networks Robustness (control systems) Self organizing maps Signal to noise ratio
  • 相关文献

参考文献8

  • 1李晶皎,孙杰,张俐,姚天顺.语音识别中HMM与自组织神经网络结合的混合模型[J].东北大学学报(自然科学版),1999,20(2):144-147. 被引量:10
  • 2SADAOKI F. Neural network based HMM adaptation for noisy speech[J]. IEEE,2001:365-368.
  • 3BURSHTEIN D. Robust parametric modeling of durations in hidden markov models [A]. Processings of IEEE ICASSP [C].Berlin,1995.
  • 4杨行峻 迟惠生.语音信号数字处理[M].北京:电子工业出版,2000..
  • 5BONAFONTE A, VIDAL J, NOGUEIRAS A. Duration modeling with expanded HMM applied to speech recognition[A].Proceedings of the Fourth International Conference on Spoken Language[C].Philadelphia, 1996.
  • 6RABINER L R. A Tutorialon hidden markov models and selected applications in speech recognition[A]. Proceedings of the IEEE[C].1989.
  • 7黄玲,潘孟贤.基于VQ/CDHMM的噪声环境下汉语口令识别研究[J].计算机工程与应用,2003,39(28):106-108. 被引量:2
  • 8CHULHEE L, DONGHOON H, EUISUN C,et al Optimizing feature extraction for speech recognition[J]. IEEE Trans on Speech And Audio Processing, 2003, 11(1):80-87.

二级参考文献6

  • 1L Rabiner,B H Juang.Fundamentals of Speech Recognition[M].Prentice Hall Press, 1993 : 112-121,348-349,125-128.
  • 2Michael Kleinschmidt,Jurgen Tchorz et al.Combining Speech Enhancement and Auditory Feature Extraction for Robust Speech Recognition[J].EISEVIER Speech Communication,2001:75-92.
  • 3Charles A Micchelli,Peder Olsen.Penalized maximum-likelihood estimation,the Baum-Welch algorithm,diagonal balancing of symmetric matrices and application to training acoustic data[J].EISEVIER,Journal of Computational and Applied Mathematics, 2000; 119 : 301-331.
  • 4Montri Karnjanadecha,Stephen A Zahorian.Signal Modeling for High-Performance Robust Isolated Word Recognition[J].IEEE TRANSACTION ON SPEECH AND AUDIO PROCESSING,2001;9(6).
  • 5Juang B H,IEEE Trans ASSP,1990年,37卷,1214页
  • 6张焱,张杰,黄志同.语音识别中隐马尔可夫模型状态数的研究[J].南京理工大学学报,1998,22(3):208-211. 被引量:5

共引文献9

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部