摘要
本文研究二阶微分方程在周期一边界条件之下解的存在性.仅仅借助Leray-Schauder的一个不动点定理,在允许g(u)超线性增长的情况下,我们得到了一个问题(1)(2)的周期解的存在性定理.
This paper deals with the existence of periodic solution of the second order differential equation of the form with periodic-boundary conditionOur result lie in that we permit g(u) to grow superlinearly in u and we only rely on Leray-Schauder's fixed point theorem.
出处
《新疆大学学报(自然科学版)》
CAS
1994年第4期56-59,共4页
Journal of Xinjiang University(Natural Science Edition)
关键词
微分方程
周期解
杜分方程
不动点定理
buffing differential equation
superlinear growth
periodic solution
Leray-Schauder's fixed point theorem