期刊文献+

一种嵌入式的协同进化模型 被引量:1

An Embeddable Coevolutionary Model
下载PDF
导出
摘要 为了提高遗传算法的性能,论文提出了一个能够体现生态进化中各种协同进化关系的协同进化模型,该模型能很容易地嵌入到遗传算法中。计算机模拟实验表明该模型的嵌入能在一定的程度解决遗传算法中的早熟现象,加快后期的收敛速度,提高遗传算法的自适应能力。 In order to improve the performance of Genetic Algorithms(GAs),this paper describes an Embeddable Coevolutionary Model(ECM),which covers all the coevolutionary relations studied in ecology and can be embedded easily in GAs.Experiments on a difficulty problem support our assumption that the embedding of the ECM in GAs can improve the adaptive capacity and performance of GAs.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第9期62-63,228,共3页 Computer Engineering and Applications
关键词 协同进化 遗传算法 嵌入式 coevolution,Genetic Algorithms,embeddable
  • 相关文献

参考文献9

  • 1张树义.协同进化(一)──相互作用与进化理论[J].生物学通报,1996,31(11):35-36. 被引量:11
  • 2S A Kazarlis et al.Microgenetic Algorithms as Generalized Hill-Climbing Operators for GA Optimization[J].IEEE Transactions on Evolutionary Computation,2001 ;5(3) :204-217.
  • 3尚玉书.普通生态学[M].北京:北京大学出版社,2002..
  • 4W Hillis.Co-evolving parasites improve simulated evolution as an optimization procedure[C].ln:C Langton,C Taylor,J Farmer eds.Artificial Life II,SFI Studies in the Sciences of Complexity,volume 10, Addison Wesley Publishing Co, 1991:313-323.
  • 5Rosen C et al.New methods for competitive coevolution[J].Evolutionary Computation, 1997 ; 5 ( 1 ) : 1-29.
  • 6Dana Vrajitoru.Parallel Genetic Algorithms Based on Coevolution[C].In :Genetic and Evolutionary Computation Conference Late Breaking Papers,2001:450~457.
  • 7Mitchell A Potter,Kenneth A De Jong.Cooperative Coevolution:An Architecture for Evolving Coadapted Subcomponents[J].Evolutionary Computation, 2000; 8 ( 1 ) : 1-29.
  • 8Mitchell A Potter,Kenneth A De Jong.A Cooperative Coevolutionary Approach to Function Optimization[C].ln:H S Y Davidor,R Manner eds.Parallel Problem Solving from Nature-PPSN III,Berlin,Spfinger- Verlag, 1994 : 249-257.
  • 9J D Schaffer,A Morishima.A study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization[C]. In:Proc 3nd Int Conf Genetic Algorithms, 1989:51-60.

共引文献10

同被引文献26

  • 1Arifovic J, Gencay R. Using Genetic Algorithms to Select Architecture of a Feedforward Artificial Neural Network. Physica A, 2001, 289(3): 574-594.
  • 2Boozarjomehry R B, Svrcek W Y. Automatic Design of Neural Network Structures. Computers and Chemical Engineering, 2001, 25(7): 1075-1088.
  • 3Blanco A, Delgado M, Pegalajar M C. A Real-Coded Genetic Algorithm for Training Recurrent Neural Networks. Neural Networks, 2001, 14(1): 93-105.
  • 4Morrison J, Oppacher F. A General Model of Co-Evolution for Genetic Algorithms Proc of the 4th International Conference on Artificial Neural Networks and Genetic Algorithms. Porto roz, Slovenia, 1999:262-268.
  • 5Iorio A, Li Xiaodong. Parameter Control within a Co-Operative Co-Evolutionary Genetic Algorithm Proe of tile 7th International Conference on Parallel Problem Solving from Nature. Granada, Spain, 2002; 247-256.
  • 6Eriksson R, Olsson B. Cooperative Coevolution in Inventory Control Optimization Proc of the 3rd International Conference on Artificial Neural Networks and Genetic Algorithms. Norwich, UK, 1997:583-587.
  • 7Potter M A, de Jong K A. The Coevolution of Antibodies for Concept Learning Proc of the 5th International Conference on Parallel Problem Solving from Nature. Amsterdam, Netherlands. 1998:530-539.
  • 8Potter M A, de Jong K A. Cooperative Coevolution: An Architecture for Evolving Coadapted Subeomponents. Evolutionary Computation, 2000, 8(1): 1-29.
  • 9Garcia-Pedrajas N, Hervds-Martinez C, Ortiz-Boyer D. Coop erative Coevolution of Artificial Neural Network Ensembles for Pattern Classification. IEEE Trans on Evolutionary Computation, 2005, 9(3):271-302.
  • 10Mitchell T M. Machine Learning. New York, USA; McGraw-Hill, 1997.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部