期刊文献+

纳米无定型MnO_2/炭黑复合电极的电容特性研究 被引量:6

CAPACITIVE CHARACTERISTICS OF AMORPHOUS MnO_2/CARBON BLACK NANOCOMPOSITE ELECTRODE FOR SUPERCAPACITOR
下载PDF
导出
摘要 以聚乙二醇和聚乙烯吡咯烷酮为分散剂,加入高比表面积、高导电性的纳米级炭黑,采取化学共沉淀法制备 MnO2/炭黑复合电极材料。借助SEM和XRD分析手段对样品结构及性能进行表征。研究结果表明复合材料为无定型、纳米级粉体。以不同的扫描速度、在不同的电位窗口范围内对MnO2/炭黑纳米复合电极作循环伏安测试和以不同的电流进行恒流充放电测试。结果表明:纳米级 MnO2/炭黑复合电极在1 mol/L的Na2SO4电解质溶液中具有理想的超级电容器特性。复合电极在电位窗口对应于饱和甘汞电极(saturated calomel electrode,SCE)电压为-0.2^+0.8 V范围内,具有良好的电容特性、电化学可逆性和良好的功率特性。复合电极的平均比电容达142.02 F/g。 The nanocomposite electrode material of amorphous MnO2 and carbon black (CB) was synthesized through chemical coprecipitation by using polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP) as surfactant and adding nano-carbon black with high specific surface area and high conductivity. The products were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results indicate that the composite prepared is amorphous nano-scaled powder. MnO2/CB nanocomposite electrode was measured by cyclic voltammetry (CV) and constant current charge-discharge method using a three electrode system under the conditions of different potential windows, different scanning rates and different current charge-discharge. The amorphous nanocomposite electrode material in 1 mol/L Na2SO4 aqueous electrolyte exhibits ideal capacitive behavior, high reversibility and high pulse charge-discharge property. It indicates that MnO2/CB nanocompostie electrode is a promising electrode material for supercapacitor. The specific capacitance of the composite as high as 142.02 F/g is obtained in the range of -0.2 - +0.8 V corresponded to saturated calomel electrode (SCE).
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2005年第2期164-169,共6页 Journal of The Chinese Ceramic Society
关键词 超级电容器 氧化锰 炭黑 纳米复合电极 电容特性 Amorphous materials Carbon black Cyclic voltammetry Electric charge Electric discharges Electrodes Manganese compounds Nanostructured materials Polyethylene glycols Precipitation (meteorology) Scanning electron microscopy X ray diffraction
  • 相关文献

参考文献5

二级参考文献29

  • 1肖占文 杨邦朝 等.计算机控制的电化学暂态测量系统[J].功能材料,1998,29:802-802.
  • 2交通部公路科学研究所主编.公路沥青路面施工技术规范[M].北京:人民交通出版社.2005.
  • 3ANDREW B. Ultracapacitors: why, how, and where is the technology[J]. J Power Sources, 2001, 91: 37-50.
  • 4IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature,1991, 354: 56-60.
  • 5JUREWICZ K, DELPEU S, BERTAGNA V,et al. Supercapacitors from nanotubes/polypyrrole composites[J]. Chem Phys Lett, 2001, 347: 36-40.
  • 6CHEN J H, LI W Z, WANG D Z, et al. Electrochemical characterization of carbon nanotubes as electrode in electrochemical double layer capacitors[J]. Carbon, 2002, 40:1 193-1 197.
  • 7ZHENG J P, CYGAN P J, JOW T R. Hydrous ruthenium oxides as an electrode material for electrochemical capacitors[J]. J Electrochem Soc, 1995, 142(8): 2 699-2 703.
  • 8MA R Z, LIANG J, WEI B Q, et al. Study of electrochemical capacitors utilizing carbon nanotube electrodes[J]. J Power Sources, 1999, 84: 126-129.
  • 9LEE H Y, GOODENOUGH J B. Supercapacitor behaviour with KCl electrolyte[J]. J Solid State Chem, 1999, 144: 220-223.
  • 10Burke, A. J. Power Sources 2000, 91, 37.

共引文献100

同被引文献37

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部