期刊文献+

类矩形芯光子晶体光纤的色散与偏振特性 被引量:22

Dispersion and polarization properties of near-rectangle core photonic crystal fibers
原文传递
导出
摘要 应用全矢量模型分析类矩形芯光子晶体光纤的色散和偏振特性 ,讨论了光纤结构参数对光纤特性的影响 .研究表明 :类矩形芯光子晶体光纤的模式双折射比普通椭圆保偏光纤至少高一个数量级 .增大光纤的相对孔径 ,可获得更高的双折射 .零走离点对应的波长也比普通椭圆保偏光纤长 ,随着孔距的增大 ,走离曲线将向长波长方向产生移位 ,零走离点发生红移 ,零走离点所对应的波长与孔距成正比 .零走离点的出现 ,将有效地抑制一阶偏振模色散 .通过调整光纤的结构参数 ,可以获得灵活的色散特性 ,在孔距Λ =2 μm ,相对孔径d Λ =0 3时 ,在波长 1 5 5 μm附近 ,获得近 4 0 0nm的超平坦色散区 .该光纤在偏振控制、色散控制和管理方面具有广泛的应用前景 . Dispersion and polarization properties of near-rectangle core photoric crystal fibers (PCFs) were analyzed with a full vector model. The numerical results show that the modal birefringence of near-rectangle core PCF is at least one order of magnitude higher than the conventional elliptical polarization-maintaining fibers (PMFs) . In order to obtain higher birefringence, an efficient way is to increase the relative hole diameter. Zero walk-off point occurs at the longer wavelength than that of convention elliptical PMF. With increasing hole pitch, the walk-off curve and zero walk-off point would shift towards the longer wavelength region. The corresponding wavelength of zero walk-off point is in proportion to the size of the hole pitch. The occurrence of zero walk-off point can efficiently restrain the first-order polarization mode dispersion. Through choosing the suitable structural parameter of near-rectangle core PCF, we can get the more flexible dispersion properties. The approximate 400nm ultra-flatten dispersion was gotten near the wavelength 1.55 mu m for a near-rectangle core PCF with Lambda = 2 mu m and d/Lambda = 0.3. This fiber has a number of potential applications in polarization control, dispersion control and management.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2005年第3期1229-1234,共6页 Acta Physica Sinica
基金 国家高技术研究发展计划 (批准号 :2 0 0 2AA3 12 190 ) 北京交通大学基金 (批准号 :PD2 68)资助的课题 .~~
关键词 光子晶体光纤 保偏光纤 平坦色散 长波长 相对孔径 偏振控制 双折射 偏振特性 矢量模型 矩形 guided wave optics photonic crystal fiber near-rectangle core full vector
  • 相关文献

参考文献9

  • 1Kaminow I P and Ramaswamy V 1979 Appl. Phys. Lett. 34 268.
  • 2Birks T A et al 1997 Opt. Lett. 22 961.
  • 3Wadsworth W J et al 2000 Electron Lett . 36 153.
  • 4Ferrando A and Silvestre E 2000 Opt. Lett. 25 790.
  • 5Snyder W 1983 Optical Waveguide Theory (New York: Chapman and Hall) p45.
  • 6任国斌,王智,娄淑琴,简水生.椭圆孔光子晶体光纤的本地正交函数模型[J].物理学报,2004,53(2):484-489. 被引量:10
  • 7Dyott R B 1995 Ellipitical Fibre Waveguides (Boston MA: Artech House) p80.
  • 8Joannopoulos J D, Meade R D and Winn J N 1995 Photonic Crystal:Molding the Flow of Light (New York: Princeton University Press)p19.
  • 9Lou S Q et al 2004 Chin. Phys. 13 1052.

二级参考文献20

  • 1Stee M J,Osgood R M 2001 J.ightwave Techno.19 495
  • 2Night J C and St P 2002 Russe Science 296 276
  • 3Night J C,Birk T A et a 1996 Opt.ett.21 1547
  • 4Night J C,Broeng J et a 1998 Science 282 1476
  • 5Birks T A,Robert P J et a 1995 Eectron ett.31 1941
  • 6Farr,Night J C et a 2002 ECOC PD 1 3
  • 7Birk T A,Night J C et a 1997 Opt.ett.22 961
  • 8Niesen M D,Petersson A et a 2002 ECOC 3.4.2
  • 9Wadsworth W J,Night J C et a 2000 Eectron ett.36 53
  • 10Stee M J,White T P et a 2001 Opt.ett.26 488

共引文献9

同被引文献269

引证文献22

二级引证文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部