期刊文献+

CoPt(FePt)-C纳米复合膜的结构与磁性 被引量:6

Structure and magnetic properties of CoPt(FePt)-C nanocomposite films
原文传递
导出
摘要 用磁过滤脉冲真空电弧沉积方法制备了CoPt(FePt) C纳米复合薄膜 ,并在不同温度下进行了退火处理 ,研究了薄膜中碳的含量以及退火温度对薄膜结构与磁性能的影响 .制备态薄膜经过足够高的温度退火后 ,x射线衍射和磁力显微镜分析发现 ,在碳基质中生成了面心四方相的CoPt(FePt)纳米颗粒 .对于特定组分为Co2 4 Pt31 C4 5和Fe4 3Pt35C2 2的薄膜 ,矫顽力以及颗粒尺寸都随退火温度的升高而增大 ,当退火温度为 70 0℃时 ,Co2 4 Pt31 C4 5薄膜的矫顽力为 2 1× 10 5A m ,晶粒尺寸为 17nm ;当退火温度为 6 5 0℃时 ,Fe4 3Pt35C2 2 相应值分别为 2 8× 10 5A m和 10 5nm . CoPt(FePt)-C nanocomposite thin films were prepared by a pulsed filtered vacuum arc deposition technique. Thermal annealing was performed in vacuum at various temperatures. The dependence of the magnetic properties on the carbon fraction and annealing temperature was studied. Both x-ray diffraction and magnetic force microscopy analyses confirmed the formation of nano-crystallites of face-centered-tetragonal phase of CoPt or FePt in the carbon matrix after annealing at a sufficiently high temperature. For the film with particular compositions of Co-24 Pt-31 C-45 and Fe-43 Pt-35 C-22, the coercivity and the grain size were observed to increase with increasing annealing temperature. For the Co-24 Pt-31 C-45 film at an annealing temperature of 700 degrees C, the coercivity was 2.1 x 10(5) A/m and the grain size was about 17nm. For the Fe-43 Pt-35 C-22 film at an annealing temperature of 650 degrees C the values were 2.8 x 10(5) A/m and 10.5nm, respectively.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2005年第3期1415-1419,共5页 Acta Physica Sinica
基金 国家自然科学基金 (批准号 :5 0 3 710 5 6) 湖北省及湖北大学优秀创新研究团队项目 湖北省教育厅重大科研项目资助的课题。~~
关键词 退火温度 纳米复合膜 磁性能 纳米复合薄膜 真空电弧沉积 薄膜结构 x射线衍射 矫顽力 磁力显微镜 四方相 magnetic recording materials magnetic film CoPt FePt nanocomposite
  • 相关文献

参考文献12

  • 1Weller D, Moser A, Felks L, Best M E, Lee W, Toney M F,Schwickert M and Thiele J 2000 IEEE Trans. Mag. 36 10.
  • 2Watanabe M, Masumoto T, Ping D H and Hono H 2000 Appl.Phys. Lett. 76 3971.
  • 3Yu M, Liu Y and Sellmyer D J 1999 J. Appl. Phys. 854319.
  • 4Lee S, Yand S and Kim Y K 2001 Appl. Phys. Lett. 78 4001.
  • 5Delaunay J J, Hayashi T, Tomita T and Hirono S 1997 Appl. Phys.Lett. 71 3427.
  • 6Karanasos V, Panagiotopoulos I and Niarchos D 2000 J. Appl.Phys. 88 2740.
  • 7Kikitsu A, Murayama A, Hyomi K and Falco C M 2000 J. Appl.Phys. 87 6944.
  • 8Yu M, Liu Y, Moser A, Weller D and Sellmyer D J 2000 Appl.Phys. Lett. 75 3992.
  • 9Wang H, Yang F J, Chen K S, Zhou B, Zhang Y W and Gu H S 2004 Chin. Phys. Lett. 21 949.
  • 10Wang H, Wong S P, Cheung W Y, Ke N, Chiah M F, Liu H and Zhang X X 2000 J. Appl. Phys. 88 2063.

同被引文献104

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部