期刊文献+

利用断层围陷波研究昆仑山口西8.1级地震破裂面 被引量:25

STUDY ON RUPTURE ZONE OF THE M=8.1 KUNLUN MOUNTAIN EARTHQUAKE USING FAULT ZONE TRAPPED WAVES
下载PDF
导出
摘要  利用横跨地表破裂带的小点距的地震测线, 对2001年11月14日昆仑山口西8.1级地震进行了断层围陷波的观测实验. 经过数字滤波和频谱分析等技术, 由地震记录图中分离出了断层围陷波. 资料处理结果表明: ①无论是人工地震震源还是天然地震震源, 只要位于断层带内或紧靠断层带, 均能激发断层围陷波; ②断层围陷波的能量主要集中于断层带内, 其振幅随测点与断层带距离的增加而急剧衰减; ③断层围陷波的优势频率与断层的宽度及断层带内介质的速度有关, 断层带越宽, 或断层带内部介质速度越低, 则观测到的断层围陷波的优势频率越低; ④断层围陷波存在着频散现象; ⑤根据昆仑山口西地震测线断层围陷波的观测结果, 可推断该处破裂面宽度为300 m左右, 远远大于地表破裂带的宽度. The observation of the fault zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M =8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated from seismograms by numerical filtering and spectral analyzing. The results show that: a) Both explosion and earthquake sources can excite fault zone trapped waves, as long as they locate in or near the fault zone; b) Most energy of the fault zone trapped waves concentrates in the fault zone and the amplitudes strongly decay with the distance from observation point to the fault zone; c) Dominant frequencies of the fault zone trapped waves are related to the width of the fault zone and the velocity of the media in it. The wider the fault zone or the lower the velocity is, the lower are the dominant frequencies; d) For fault zone trapped waves, there exist dispersions; e) Based on the fault zone trapped waves observed in Kunlun Mountain Pass region, the width of the rupture plane is deduced to be about 300 m and is greater than that on the surface.
出处 《地震学报》 CSCD 北大核心 2005年第1期42-50,共9页 Acta Seismologica Sinica
基金 地震科学联合基金重点项目(201001)资助 中国地震局地球物理勘探中心论著编号: RCEG200305.
关键词 断层围陷波 昆仑山口西8.1级地震 地震破裂面 fault zone trapped waves M =8.1 Kunlun Mountain earthquake seismic rupture plane
  • 相关文献

参考文献9

  • 1陈文彬,徐锡伟,张志坚,陈永明,何文贵,刘洪春,戴华光,陆鸣.2001年11月14日青新交界M_S8.1地震地表破裂带的初步调查[J].西北地震学报,2001,23(4):313-317. 被引量:29
  • 2Li Y G, Aki K, Adams D, et al. 1994a. Seismic guided waves trapped in the fault zone of the Landers, California, earthquake of 1992[J]. J Geophys Res, 99: 11 705~11 722.
  • 3Li Y G, Vidale J E, Aki K, etal. 1994b. Fine structure of the Landers fault zone: segmentation and the rupture process [J]. Science, 256:367~370.
  • 4Li Y G, Aki K, Vidale J E, etal. 1998. A delineation of the Nojima fault ruptured in the M7. 2 Kobe, Japan, earthquake of 1995 using fault zone trapped waves[J]. J Geophys Res, 103:7 247~7 263.
  • 5Li Y G, Aki K, Vidale J E, et al. 1999. Shallow structure of the Landers fault zone using explosion-excited trapped waves[J]. J Geophys Res, 104: 20 257~20 275.
  • 6Li Y G, Vidale J E, Aki K. 2000. Depth-dependent structure of the Landers fault zone using fault zone trapped waves generated by aftershocks[J]. J Geophys Res, 105:6 237~6 254.
  • 7Li Y G, Vidale J E. 2001. Healing of the shallow fault zone from 1994~1998 after the 1992 M7. 5 Landers, California earthquake[J]. GeophysRes Lett, 28:2 999~3 002.
  • 8Li Y G, Vidale J E, Day S M, etal. 2002. Study of the 1999 M7.1 Hector Mine, California earthquake fault plane by trapped waves[J]. Bull Seism Soc Amer, 92:1 318~1 332.
  • 9Li Y G, Vidale J E, Oglesby D D, et al. 2003. Multiple-fault rupture of the M7. 1 Hector Mine, California earthquake from fault-zone trapped waves[J]. J Geophys Res, 108:2 165~2 190.

共引文献28

同被引文献307

引证文献25

二级引证文献169

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部