期刊文献+

P2M扩散与相干增强扩散相结合的抑制噪声方法 被引量:10

Image Denoising through Combination of P M Diffusion and Coherence Enhancing Diffusion
下载PDF
导出
摘要 该文讨论保边缘的去噪问题。针对P2M扩散不能有效保持线状特征,相干增强扩散易出现虚假条纹的缺点,提出了一种P2M扩散与相干增强扩散相结合的去噪方法。首先,建立了一个P2M扩散与相干增强扩散的加权组合模型。该模型在图像边缘部分侧重于相干增强扩散,其余部分则侧重于P2M扩散。然后,针对模型中存在的参数选取问题进行了分析。从公式推导出发,得到了在边缘点百分比给定的条件下,P2M扩散参数的自适应取值方法,并从应用的角度出发,得到了相干增强扩散参数的经验取值。仿真计算结果表明,与一些常用的去噪方法相比,该方法既能有效地抑制图像噪声,又能较好地保持边缘等线状特征,同时具有较高的峰值信噪比。 This paper discusses how to maintain more edge information in the process of image denoising. It is well known that in P M diffusion, noise at edges cannot be eliminated successfully and line like structures cannot be held well, while in coherence enhancing diffusion, false textures arise. Thus, a denoising method of jointing these two models comes out. First, a weighted model of combining P M diffusion with coherence enhancing diffusion is built, which emphasizes particularly on coherence enhancing diffusion at edges of an image while on P M diffusion at the other part. Then, how to select parameters in the model is analyzed. An adaptive parameter selection method in P M diffusion is achieved when the percent of the edge pixels in an image is given, and the experiential method to decide the parameters in coherence enhancing diffusion is proposed. And at last, the experimental results show that, compared with some conventional denoising methods, the proposed method can remove noise efficiently in images, keep line like structures well, and has higher peak signal to noise ratio.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2005年第2期158-163,共6页 Journal of Image and Graphics
基金 全国优秀博士论文作者专项基金(200140) 国家重点实验室开放基金 (TKLJ0102)
关键词 抑制噪声 去噪方法 图像噪声 峰值信噪比 扩散 增强 相结合 百分比 取值方法 条纹 Perona Malik diffusion(P M diffusion), coherence enhancing diffusion, image denoising
  • 相关文献

参考文献12

  • 1谢杰成,张大力,徐文立.小波图象去噪综述[J].中国图象图形学报(A辑),2002,7(3):209-217. 被引量:254
  • 2高鑫,刘来福.基于PDE模型的图像处理方法[J].数学的实践与认识,2001,31(2):206-210. 被引量:7
  • 3柳薇,马争鸣.基于边缘检测的图象小波阈值去噪方法[J].中国图象图形学报(A辑),2002,7(8):788-793. 被引量:31
  • 4陈朝阳,李强,张桂林.一种基于变形模型的红外图像去噪新方法[J].红外与激光工程,1998,27(4):6-8. 被引量:8
  • 5Joachim Weickert. A review of nonlinear diffusion filtering [ A ].Scale-Space Theory in Computer Vision, Lecture Notes in Computer Science[ M], Berlin: Springer, 1997:3 -28.
  • 6Rein van den Boomgaard. Algorithms for nonlinear Diffusion Matlab in a Literate Programming Style[CP/OL]. http://carol. wins. uva.nl/- rein/nldiffusionweb/material. html,2001-09.
  • 7weickert J. Theoretical foundations of anisotropic diffusion in image processing[ J]. Computing, 1996, 11 ( supp. ): 221 - 236.
  • 8You Yu-li, Kaveh M. Fourth-order partial differential equations for noise removal[ J ]. IEEE Transactions on Image Processing, 2000,9(10): 1723 - 1730.
  • 9Joachim Weickert. Coherence-enhancing diffusion filtering [ J ].International Journal of Computer Vision, 1999, 31 ( 2/3 ): 111 -127.
  • 10Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12(7) :629 -639.

二级参考文献95

  • 1[1]Fischl B, Schwartz E L. Adaptive nonlocal filtering: A fast alternative to anisotropic diffusion for image enhancement. IEEE Trans on PAMI, 1999, 21:42.
  • 2[2]Hamza A B, Luque-Escamilla P L, Aroza J M, et al. Removing noise and preserving details with relaxed median filters. J of Mathematical Imaging and Vision, 1999, 11:161.
  • 3[3]Nitzberg M, Shiota T. Nonlinear image filtering with edge and corner enhancement. IEEE Trans on PAMI, 1992, 14(8):826~833.
  • 4[4]Hummel A. Representations based on zero-crossing in scale-space. Fischler M, Firschein O. eds, Readings in Computer Vision: Issues, problems, Principles and Paradigms. Los Angoles, Calif:Morgan Kaufmann, 1986.
  • 5[5]Koenderink J. The structure of image. Biological Cybernetics, 1984, 50:363~370.
  • 6[6]Perona P, Malik J. Scale Space and Edge Detection Using Anisotropic Diffusion. Proc IEEE Workshop Computer Vision, Miami, Fla., 1987,16~27.
  • 7[7]Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans PAMI, 1990,12(7):629.
  • 8[8]Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithm. Physica D, 1992, 60:259~268.
  • 9[9]Alvarez L, Lions P L, Morel J M. Image Selective Smoothing and Edge Detection by Nonlienar Diffusion Ⅱ. SIAM J Numerical Analysis, 1992, 29*3):845~866.
  • 10[10]CHEN Yun-mei, Vemuri B C, Wang L. Image denoising and segmentation via nonlinear diffusion. Computers and Mathematics with Application, 2000, 39:131.

共引文献283

同被引文献64

引证文献10

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部