期刊文献+

独立分量分析在有噪图像分离中的应用 被引量:10

Application of Independent Component Analysis on Noisy Image Separation
下载PDF
导出
摘要 独立分量分析(independentcomponentanalysis,ICA)是基于信号高阶统计量的盲源分离方法。在分析独立分量分析的基本模型及方法的基础上,讨论了有噪信号的独立分量分析(NoisyICA),利用小波阈值去噪和FastICA算法进行了有噪混合图像分离的仿真研究。结果表明,对于含有加性观测噪声的混合图像的分离,先去噪处理再进行独立分量分离的效果要优于独立分量分离后再去噪的效果。 Independent Component Analysis(ICA) is a novel method for blind source separation based on high statistics. The basic model and methods of ICA are introduced, and then the ICA of noisy signals is discussed. The method of wavelet threshold de noising and the algorithm of Fast ICA are studied with the simulation of noisy mixed image separation. The results show that for the mixed images with additive white Gaussian noise, it’s better to de noise the images before applying ICA than to apply ICA first and then de noise the independent components.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2005年第2期241-244,共4页 Journal of Image and Graphics
基金 山东省自然科学基金项目(Y2000C25)
关键词 独立分量分析 混合图像 信号 盲源分离 高阶统计量 ICA算法 小波阈值去噪 基本模型 仿真研究 噪声 independent component analysis, wavelet threshold de noising, image de noising, image separation
  • 相关文献

参考文献10

  • 1彭玉华.基于离散正交小波变换的图象去噪方法[J].中国图象图形学报(A辑),1999,4(8):677-679. 被引量:21
  • 2Comon P. Independent component analysis, A new concept.? [ J ].Signal Processing, 1994,36 ( 3 ) :287 ~ 314.
  • 3Paraschiv-Ionescu A, Jutten C. Source separation in strong noisy mixtures: a study of wavelet de-noising pre-processing [ A ]. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ASSP) [C], Orlando, Florida, USA. 2002,2:1681 ~ 1684.
  • 4Hyvarinen A. Fast ICA for noisy data using Gaussian moments [ A ].In: Proceedings of the 1999 IEEE International Symposium on Circuits and Systems(ISCAS) [ C ], Orlando, Florida, USA, 1999,5:57 ~61.
  • 5Paraschiv-Ionescu A, Jutten C, Aminian K, et al. Wavelet denoising for highly noisy source separation [ A ]. In: IEEE International Conference on Acoustics, Speech and Signal Processing(ASSP) [C],Orlando, Florida, USA, 2002,1:201 ~204.
  • 6Heinz Mathisa, Marcel Joho. Blind signal separation in noisy environments using a three-step quantizer [ J ]. Neurocomputing,2002,49(1-4): 61 ~78.
  • 7Sergiy Vorobyov, Andrzej Cichocki. Blind noise reduction for multisensory signals using ICA and subspace filtering, with application to EEG analysis [ J ]. Biological Cybernetics, 2002,86(4) :293 ~303.
  • 8周卫东,2贾磊.小波变换和独立分量分析去除脑电信号中的噪声和干扰[J].山东大学学报(医学版),2003,41(2):116-119. 被引量:15
  • 9Ddonoho D I. De-noising by soft-thresholding[ J ]. IEEE Transactions on Information Theory, 1995,41(3) :613 ~626.
  • 10Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis [ J ]. IEEE Transactions on Neural Networks,1999,10 ( 3 ) :626 ~ 634.

二级参考文献14

  • 1彭玉华,汪文秉.小波用于估测散射波波达时间及去噪[J].电子学报,1996,24(4):113-116. 被引量:18
  • 2Bell A J, Sejnowski T J. An information maximization approach to blind separation and blind deconvolution[J]. Neural Computation, 1995,7(6):1129.
  • 3Lee TW. Independent component analysis using an extended infomax algorithm for mixed Subgaussian and Supergaussian sources[J]. Neural Computation, 1999,11(2):409.
  • 4Hyvarinen A. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis [J]. IEEE Trans Neural Networks, 1999,10( 3): 626.
  • 5Comon P. Independent component analysis, A new concept? [J]. Signal Processing, 1994,36:287.
  • 6Lee TW. Blind source separation of more sources than mixtures using overcomplete representations [J].IEEE Signal Processing Letters, 1999,6(4):87.
  • 7Amari SI, Cichocki A, Yang H H. A new learning algorithm for blind signal separation[R]. Advances in Neural Information Processing Systems. MIT press,1996, 8:757.
  • 8Cichocki A. Robust learning algorithm for blind separation of signals[J]. Electronics Letters, 1994,30(17):1386.
  • 9Ddonoho D1. De-noising by sofi-thresholding[J]. IEEE Trans Information Theory, 1995, 41(3): 613.
  • 10Mallat S, Hwang WL. Singularity Detection and Processing with Wavelets [J]. IEEE Trans Information Theory, 1992, 38(2): 617.

共引文献33

同被引文献106

引证文献10

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部