期刊文献+

水热法合成Ni(OH)_2/SiO_2催化剂制备碳纳米管:镍含量对碳纳米管管径和产率的影响 被引量:5

CVD Growth of Carbon Nanotube with Ni(OH)_2/SiO_2 Catalyst Synthesized by Hydrothermal Mthod:Influence of the Ni Content on the Diameter and Yield of Carbon Nanotube
下载PDF
导出
摘要 以硝酸镍和正硅酸乙酯为主要原料,采用前驱物水热法制得不同镍含量的纳米Ni(OH)2/SiO2复合粉体,用复合粉体做催化剂催化裂解C2H2制得多壁碳纳米管粗产物.研究表明:在复合粉体Ni(OH)2/SiO2催化剂中,硅镍比在一定范围内(1:2~1:14),随着镍含量增加,粒径增大,结晶程度提高,催化剂活性先提高后下降,制得的碳纳米管纯度及产量先增后降,碳管的管径分布范围先窄后宽.催化剂硅镍比为1:12时,制得的碳纳米管纯度高,管径细而均匀(10~18nm),且粗产物数量较多(1g催化剂合成3.3g碳纳米管粗产物). Ni(OH)_2/SiO_2 compound nano-particles were synthesized by hydrothermal method using the nitric acid and TEOS(tetraethyl orthosilicate) with different Ni content as the precursor materials .They were deoxidized by H_2 ,then catalyzed and cracked C_2H_2 to synthesize carbon nanotube original products.The results show that the diameters of Ni(OH)_2/SiO_2 compound nano-particles become larger,the proportion of the crystallization also rises with TEOS: nitric acid from 1:2 to 1:14,and the activity of the catalysts firstly increases,and then fall.And thus the purity and yield of the carbon nanotubes also firstly increase and fall later. First the ranges of the tube diameter of the carbon nanotubes were narrow,and then wider. When the TEOS: nitric acid of the catalyst was 1∶12, the purest MWCNTs with smaller(10-18nm) and more symmetrical diameter can be got.And the yield of the original product is high,that is,a (3.3g) carbon nanotubes original product is made from 1g catalyst.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2005年第1期155-158,143,共5页 Journal of Synthetic Crystals
基金 国家自然科学基金 (No. 50372013) 广东省自然科学基金(No. 20010026: 004009487)资助项目
关键词 复合粉体 镍含量 催化剂制备 SiO2 水热法合成 纯度 催化剂活性 C2H2 多壁碳纳米管 产率 hydrothermal method catalytic cracking carbon nanotube XRD
  • 相关文献

参考文献3

二级参考文献21

  • 1施尔畏,栾怀顺,仇海波,王爱民,仲维卓,冯楚德,郭景坤.水热法制备超细 ZrO_2粉体的物理-化学条件[J].人工晶体学报,1993,22(1):79-86. 被引量:22
  • 2施尔畏,夏长泰,仲维卓,华素坤,冯楚德,冯锡淇,张申.水热法制备的BaTiO_3微晶粒的特性[J].无机材料学报,1995,10(4):385-390. 被引量:36
  • 3A C Dillon, K M Jones, T A Bekkedahl, C H Kiang, D S Bethune and M J Heben, Nature 386(1997) 377.
  • 4C Liu, Y Y Fan, M Liu, H T Cong, H M Cheng and M S Dresselhans, Science 286 (1999) 1127.
  • 5M M Treacy, T W Ebbesen and J M Gibson, Nature, 381 (1996) 678.
  • 6Q H Wang, A A Setlur, J M Lanerhaas, J Y Dai, E W Seelig and R P H Chang, Appl Phys Lett.72 (1998) 2912.
  • 7J T Hu, M Ouyang, P D Yang and C M Lieber, Nature, 399 (1999) 48.
  • 8H J Li, J C Peng, Z H Chen, H Xia and A X Hu, Chinese Journal of Chemical Physics 14(2) (2001)211 (in Chinese).
  • 9S S Fan, M G Chapline, N R Franklin, T W Tombler, A M Cassell and H J Dai, Science 283 (1999)512.
  • 10S Iijima, Nature 354 (1991) 56.

共引文献299

同被引文献58

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部