期刊文献+

基于场景识别的移动机器人定位方法研究 被引量:20

Scene Recognition for Mobile Robot Localization
下载PDF
导出
摘要 提出了一种基于场景识别的移动机器人定位方法.对CCD采集的工作环境的系列场景图像,用多通道Gabor滤波器提取场景图像的全局纹理特征,然后通过SVM分类器来识别场景图像,实现机器人的逻辑定位.在移动机器人CASIA I上对该算法进行了实验.实验结果表明,该定位方法可达到 91. 11%的定位准确率,对光照、对比度等因素有较强的鲁棒性,并且满足机器人实时定位的要求. This paper proposes a scene recognition approach for mobile robot localization. The multi-channel Gabor filters are used to extract the global texture features of the scene images which are associated with the corresponding locations, and then these texture features are fed back to support the vector machine classifier to determine the logical location of the robot. The algorithm has been tested on the autonomous mobile robot CASIA-I designed and developed by us. The experiment results indicate that the algorithm can reach up to a correct localization rate of 91.11%, is robust to the various illumination and contrast, and satisfies the real-time localization demand of the mobile robot.
出处 《机器人》 EI CSCD 北大核心 2005年第2期123-127,共5页 Robot
基金 国家 863计划机器人技术主题资助项目(2002AA423160).
关键词 移动机器人 定位 GABOR滤波器 SVM mobile robot localization Gabor filter SVM
  • 相关文献

参考文献16

  • 1Ulrich I,Nourbakhsh I. Appearance-based place recognition for topological localization [A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. 2000.1023-1029.
  • 2Zhou C,Wei Y C,Tan T N. Mobile robot self-localization based on global visual appearance feature[A]. Proceedings of the 2003 IEEE International Conference on Robotics and Automation[C]. 2003.1271-1276.
  • 3Carreira M J,Orwell J,Turnes R,et al. Perceptual grouping from Gabor filter responses[A].Proceedings of the Ninth British Machine Vision Conference[C]. Southampton,UK: 1998. 336-345.
  • 4Manjunath B,Ma W Y. Textures features for browsing and retrieval of image data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(8): 837-842.
  • 5Lee T S. Image representation using 2D gabor wavelets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(10): 959-971.
  • 6Rui Y,Huang T S,Chang S F. Image retrieval: past,present,and future[J]. Journal of Visual Communication and Image Representation,1999,10(1):1-23.
  • 7Vapnik V N. Statistical Learning Theory[M].Wiley,New York:1998.
  • 8Cristianini N,Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-based Methods[M]. Cambridge,UK: Cambridge University Press,2000.
  • 9Bovik A C,Clark M,Geisler W B. Multichannel texture analysis using localized spatial filters[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(1): 55-73.
  • 10Tan T N. Texture feature extraction via cortical channel modeling[A]. Proceedings of the 11th IAPR International Conference on Pattern Recognition[C]. 1992,3. 607-610.

同被引文献216

引证文献20

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部