期刊文献+

基于栅格法的机器人路径规划蚁群算法 被引量:123

An Ant Colony Algorithm Based on Grid Method for Mobile Robot Path Planning
下载PDF
导出
摘要 描述了一种静态环境下的机器人路径规划仿生算法.该算法用栅格法对场景进行建模,模拟蚂蚁的觅食行为,由多只蚂蚁协作完成最优路径的搜索.搜索过程采用了概率搜索策略、最近邻居策略和目标导引函数,使得搜索过程极为迅速高效.仿真实验结果表明,即使在障碍物非常复杂的地理环境,用本算法也能迅速规划出最优路径,且能进行实时规划,效果十分令人满意. A bionics algorithm for robot path planning in static environment is proposed, in which the environmental models are established with grid method, the foraging behavior of ant colonies is simulated and optimal path search is finished by many ants cooperatively. Furthermore, the strategies of probabilistic search, nearest neighbor search and a goal guiding function are applied to enable the searching to be rapid and efficient. Results of simulation experiments demonstrate that the best path can be found in short time, real-time planning can be achieved, and the effect is very satisfying even if the geographic conditions with obstacles are exceedingly complicated.
出处 《机器人》 EI CSCD 北大核心 2005年第2期132-136,共5页 Robot
关键词 移动机器人 路径规划 蚁群算法 概率搜索 mobile robot path planning ant colony algorithm probabilistic searching
  • 相关文献

参考文献7

  • 1Wang C M,Soh Y C,Wang H,et al. A hierarchical genetic algorithm for path planning in a static environment with obstacles[A]. IEEE CCECE Canadian Conference on Electrical and Computer Engineering[C]. 2002,vol.3.1652-1657.
  • 2D'Amico A,Ippoliti G,Longhi S A. Radial basis function networks approach for the tracking problem of mobile robots[A]. Proceedings of the IEEE/ASME. International Conference on Advanced Intelligent Mechatronics[C]. 2001,vol.1. 498-503.
  • 3Weerayuth N,Chaiyaratana N.Closed-loop time-optimal path planning using a multi-objective diversity control oriented genetic algorithm[A]. Systems,Man and Cybernetics[C]. IEEE International Conference on,Vol.6:7.
  • 4Bruce J,Veloso M. Real-time randomized path planning for robot navigation[A]. Intelligent Robots and Systems 2002. IEEE/RSJ International Conference on,2002,Vol.3. 2383- 2388.
  • 5Dorigo M,Maniezzo V,Colorni A. Ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems ,Man and Cybernetics,Part B: Cybernetics,1996,26(1): 29-41.
  • 6Dorigo M,Dicaro G. Ant colony optimization: a new meta-heuristic[A]. Proceedings of the 1999 Congress on Evolutionary Computation[C]. Washington,DC,USA: 1999,Vol.2. 1477. 474-477.
  • 7Dorigo M,Gambardella L M,Middendorf M,et al. Guest editorial: special section on ant colony optimization[A]. IEEE Transactions on Evolutionary Computation[C]. 2002,6(4): 317-319.

同被引文献900

引证文献123

二级引证文献1193

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部