期刊文献+

一种可减少训练时间的分层并行支持向量机方法 被引量:1

A Hierarchical and Parallel Support Vector Machines Algorithm for Reducing the Training Time
下载PDF
导出
摘要 基于支持向量的本质和并行计算方法,提出了一种新的分层并行的机器学习方法以加速支持向量机的训练过 程.该方法首先按照分而治之的思想将原分类问题分成若干子问题,然后将支持向量机的训练过程分解成级联的两个层次, 在每层采用并行的方法训练各个子支持向量机.各层训练集中的非支持向量被逐步筛选掉,交叉合并的规则保证问题的一 致性.仿真结果表明该方法在保证分类器推广能力的同时,缩短了训练支持向量机的时间. Based on the essence of support vectors and parallel algorithm, the paper proposes a novel strategy of filtering the training samples in a hierarchical and parallel way to speed up the training of support vector machines (SVMs). During the training process, the entire classification problem is divided into several small sub-problems that can be handled in a parallel way. Having hierarchically filtered out the non-support-vector data, we can obtain the final training data set, which is used to train a SVM that will be used as the final pattern classifier. In order to keep the consistency, the cross-combining principle is introduced. The simulation results illustrate that our method speeds up training while maintaining the generalization accuracy of SVMs.
出处 《南京师范大学学报(工程技术版)》 CAS 2005年第1期8-11,共4页 Journal of Nanjing Normal University(Engineering and Technology Edition)
基金 湖南省青年骨干教师资助项目(湘教通[2001]204号).
关键词 分层筛选 支持向量机 交叉合并 hierarchical filtering, support vector machines, cross-combining
  • 相关文献

参考文献8

  • 1[1]Vladimir N. Vapnik. Statistical Learning Theory[M]. NewYork: Springer-Verlag,1998.
  • 2许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 3[3]Edgar Osuna, Robert Freund, Federico Girosi. An improved training algorithm for support vector machines[A]. Proceedings of IEEE[C]. NNSP,1997.276-285.
  • 4[4]Thorsten Joachims. Making large-scale SVM learning pratical[A]. Advances in Kernel Methods-Support Vector Learning, Cambridge[C]. MIT Press,2000.169-184.
  • 5[5]Lu Baoliang, Wang Kaian, Utiyama M, et al. A part-versus-part method for massively parallel training of support vector machines[A]. Proceedings of IEEE/INNS Int. Joint Conf. on Neural Networks (IJCNN2004)[C]. Hungary: Budapest,2004.735-740.
  • 6[6]Anton Schwaighofer, Vloker Tresp. The bayesian committee support vector machine[J]. Lecture Notes in Computer Science, 2001,2130:411-417.
  • 7[7]Nadeem Ahmed Syed, Huan Liu, Kah Kay Sung. Incremental learning with support vector machines[A]. Proceedings of the Workshop on Support Vector Machines at the International Joint Conference on Artificial Intelligence[C]. Sweden: Stockholm,1999.
  • 8[8]Blake C L, Merz C J. UCI(ftp://ftp.ics.uci.edu/pub/machines-learning-database).

二级参考文献25

  • 1[1]Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers[A]. The 5th Annual ACM Workshop on COLT [C]. Pittsburgh:ACM Press, 1992. 144-152.
  • 2[2]Cortes C, Vapnik V N. Support vector networks[J].Machine Learning, 1995, 20(3): 273-297.
  • 3[3]Drucker H, Burges C J C, Kaufman L, et al. Support vector regression machines [A]. Advances in Neural Information Processing Systems[C]. Cambridge: MIT Press, 1997. 155-161.
  • 4[4]Vapnik V N, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing [A]. Advances in Neural Information Processing Systems [ C ].Cambridge: MIT Press, 1997. 281-287.
  • 5[5]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 6[6]Vapnik V N. Statistical Learning Theory [M]. New York: Wiley, 1998.
  • 7[7]Vapnik V N. The Nature of Statistical Learning Theory [M]. 2nd edition. New York: SpringerVerlag, 1999.
  • 8[8]Platt J. Fast training of support vector machines using sequential minimal optimization [ A ]. Advances in Kernel Methods - Support Vector Learning [C].Cambridge: MIT Press, 1999. 185-208.
  • 9[9]Suykens J A K, Vandewalle J. Least squares support vector machines [J]. Neural Processing Letters, 1999, 9(3): 293-300.
  • 10[10]Scholkopf B, Smola A J, Williamson R C, et al. New support vector algorithms [J]. Neural Computation,2000, 12(5) :1207-1245.

共引文献131

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部