期刊文献+

迭代法求解增生算子挠动方程

ITERATIVE METHODS TO RESOLVE PERTURBED EQUATIONSOF ACCRETIVE OPERATORS
下载PDF
导出
摘要 研究了求解增生算子挠动方程这一问题,通过改进已有的Ishikawa迭代,构造了一种新的迭代方法,利用该方法给出了增生算子紧挠动方程解的一种迭代逼近。本文的其他结果还统一和推广了Chidume、Tan&Xu的相应结果。 This paper investigates how to resolve perturbed equations of accretive operators and obtains an iterative method that can get solutions of the equations involving compact perturbations of accretive eperators.The results partly answer the above problem.Other results are obtained which unify and generalize the corresponding ones of Chidume and Tan&Xu.
出处 《南昌大学学报(理科版)》 CAS 北大核心 2005年第1期1-4,共4页 Journal of Nanchang University(Natural Science)
基金 江西省自然科学基金资助项目(0411036)
关键词 增生算子 挠动方程 迭代逼近 accretive operator perturbed equation iterative approximation
  • 相关文献

参考文献12

  • 1李育强,刘理蔚.关于Lipschitz强增生算子的迭代程序[J].数学学报(中文版),1998,41(4):845-850. 被引量:41
  • 2Chidume C E.An Iterative Process for Nonlinear Lipschitzian Strongly Accretive Mapping in L^p Spaces[J].J Math Anal Appl,1990,151:453-461.
  • 3Tan K K & Xu H K.Iterative Process for Nonlin Ear Equations of Strongly Accretive Operators in Banach Spaces[J].J Math Anal Appl,1993,178:9-21.
  • 4Chidume C E.The Iterative Solution of the Equation for a Monotone Operator T in L^p Spaces[J].J Math Anal Appl,1986,116:531-537.
  • 5Hirano N & Kalinda A K.On Peturdations of M-accretive Operatives in Banach Spaces[J].Proc Amer Math Soc,1996,124:1 183-1 190.
  • 6Kartsatos A G.On the Perturbation Theory of M-accretive Operators in Banach Space[J].Proc Amer Math Soc,1996,124:1 811-1 820.
  • 7Kartsatox A G,Liu X P.Nonlinear Equation Involving Compact Perturbations of M-accretive Operators in Banach Space[J].Nonliear Anal TMA,1995,24:469-492.
  • 8Kato T.Nonlinear Semigroup and Evolution Equation[J].J Math Soc Japan,1967,19:508-520.
  • 9Browder F E.Nonlinear Mappings of Nonexpansive and Accretive Type in Banach Space[J].Bull Amer Math Soc,1927,73:875-882.
  • 10Shioji N & Takahashi W.Strong Convergence of Approximated Sequences for Nonexpansive Mappings in Banach Spaces[J].Proc Amer Math Soc,1997,12:3 641-3 645.

二级参考文献5

  • 1Deng L,J Math Anan,1994年,188卷,1期,128页
  • 2刘理蔚,J Math Anal Appl,1995年,194卷,1期,114页
  • 3Deng L,Nonlinear Anal TMA,1995年,24卷,7期,981页
  • 4Deng L,J Math Anal Appl,1993年,174卷,2期,441页
  • 5Tan K K,J Math Anal Appl,1993年,178卷,1期,9页

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部