摘要
通过拟上下解的单调迭代过程,讨论了Banach空间中的一阶常微分方程终值问题u′=f(t,u,u),0≤t≤1u(1)=x1获得了该问题的解的存在唯一性.
By using the monotone iteration scheme with quasi-upper and lower solutions, the terminal value problem of differential equations in Banach spaces is discussed:u′=f(t,u,u),0≤t≤1u(1)=x_1and the results of existence and their uniqueness are obtained.
出处
《甘肃科学学报》
2005年第1期10-12,共3页
Journal of Gansu Sciences
关键词
BANACH空间
终值问题
拟上下解
单调迭代
Banach spaces
terminal value problem
quasi-upper and lower solutions
monotone iteration