摘要
在紧型条件下,运用Sadovskii不动点定理,讨论了Banach空间中一阶非线性常微分方程终值问题,获得了无穷区间上解的存在性结果.
Under the theory of compactness and by using Sadovskii fixed point theorem, the existence of terminal value problems for first-order ordinary nonlinear differential equations in Banach spaces is discussed, and some results of existence are obtained on the infinite interval.
出处
《甘肃科学学报》
2005年第1期13-15,共3页
Journal of Gansu Sciences
关键词
BANACH空间
终值问题
非紧性测度
解的存在性
Banach spaces
terminal value problem
noncompactness measure
the existence of the solution