期刊文献+

片断分子的建立和正则轨道的定域化

The formation of fragment molecules and the localization of canonical molecular orbitals
原文传递
导出
摘要 为了研究共轭分子的芳香性,我们建立了新的作用能分解法。该方法的核心是为任何一个共轭分子提供一个π和σ体系彻底分离的轨道基组{Φ_m^(P-π),Φ_l^(P-σ),Φ_t^P}。为此,放射形环炔烃分子(D_(3h)对称的)必须分割成3个乙炔片断(A,C,E)和3个乙烯片断(B,D,F),它的{Φ_m^(P-π),Φ_l^(P-σ),Φ_t^P}是由6个片断的轨道基组{ψ_k^(P-π),ψ_n^(P-σ),φ_s^('P)}(P=A,B,…,F)叠加而成。FMP-L和FMP-R(P=A,B,…,F)是片断P的两个片断分子,设它们C-H_R键的键长分别是r_R(P)和r_L(P)。在定域化后,单占据轨道φ_s^('P)和参考氢原子H_R占据轨道φ_h^('H)的总电子数∑q_(?)(P)+∑q_h(P)总是正确的,与r_R(P)和r_L(P)的取值无关。但是,{φ_s^('P)的空间取向取决于r_L(P)和r_R(P)的值。在片断A和B中,R_V(A)=(-V/T)=1.95153+0.50869*r_R^V(A),R_V(B)=1.94556+0.54823*r_R^V(B),设R_V=2,则r_R^V(A)=0.09528nm,r_R^V(B)=0.09930nm。另外,有条件地优化FMP-R可算得:r_R^O(A)=0.10658nm,r_R^O(B)=0.10888nm。当r_R^V(P)和r_R^O(P)确定后,可得到;q_S^V(A)=6.05124-56.5228*r_L^V(A),q_S^V(B)=5.17915-47.0804*r_L^V(B);q_S^O(A)=5.81883-49.0924*r_L^O(A),q_S^O(B)=4.70043-39.0818*r_L^O(B)。然后设q_S(P)=q_h(P)=(1/4)(∑q_S(P)+∑q_h(P)),可得到:r_L^V(A)=0.08937nm,r_L^V(B)=0.08678nm;r_L^O(A)=0.09816nm,r_L^O(B)=0.09297nm,再由r_R^V(P)和r_L^V(P)计算的{Φ_m^(P-π),Φ_l^(P-σ),Φ_t^P}中,每一对成键单占据轨道Φ_t^P的电子占据数Q_t比较均匀合理,它的12个单占据轨道的电子总占据数为∑Q_t=12.3。另外,在由{Φ_m^(P-π),Φ_l^(P-σ),Φ_t^P}~V算得的FUL态中,轨道分布也是更好地满足FUL态的基本特征。所以r_R^V(P)和r_L^V(P)比r_R^O(P)和r_L^O(P)更为合理。 A new program for energy partition has been developed to quantify aromaticity, and its sub-program, a multi-step procedure, provides an aromatic compound with a LFMO (localized fragment molecular orbital) basis set, in which the ∏ and (?) systems have been separated out thoroughly. Accordingly, a redialene molecule (C_(12)H_6, D_(3h)) has to be dissected into three - C ≡ C - fragments (A, C ,E) and three - C = C - fragments(B, D, F), and its results from the superposition of six fragment MO (molecular orbital) basis sets (P=A,B, … , F). The localization of canonical MO basis set is simplified due to the formation of fragment molecules FMP- L, and it ensures that total electronic occupancy Σq_i, a sum of Σq_s (P) for all singly occupied fragment MOs (?)_S('P) and Σq_h (P) for the singly occupied fragment MOs of all referential hydrogen atoms H_R, is always correct. After the localization, the conditional RHF computation based on the fragment molecule FMP-R is to separate the Σ and (?) systems out thoroughly. It is necessary to determine the lengths r_L(P) and r_R(P) of the bond C-H_R in FMP-L and FMP-R because these lengths have a great effect on the orientation of the singly occupied (?)_S^('P). There are two methods of determining r_R(P). The first one is based on the linear function: R_v(A)=(-V/T)=1.95153+0.50869 * r_R^V(A), R_v(B)=1.94556+0.54823 * r_R^V (B). When R_v = 2, r_R^V(A)=0.09528nm, r_R^V(B)=0.09930nm. Secondly, r_R^O(A)=0.10658nm and r_R^O(B)=0.10888nm, are obtained from the conditional geometry optimization of FMP-R at B3LYP/6-311G ** . As soon as the values of r_R (P) are deter- mined, the following linear relationships between q_3 (P) for a specific (?)_S^('P) and the length r_L (P) are found : (i) q_3~V (A) = 6.05124 - 56.5228 * r_L^V(A), q_3~V(B) = 5.17915 - 47.0804 * r_L^V(B); (ii) q_S^O(A) = 5.81883 - 49.0924 * r_L^O(A), q_3~O(B) = 4.70043 - 39.0818 * r_L_O(B). Setting of q_3(P) = (1/4) (Σq_3(P) + Σq_h(P)) provides FMP-L with r_L^V(A) = 0.08937nm,r_L^V(B) = 0.08678 nm; r_L^O(A) = 0.09816nm, r_L^O(B) = 0.09297 nm. Two basis sets, denoted as correspond to two groups of the bond lengths ( r_L^V (P) and r_L^V (B)) and ( r_L^O (P) and r_R^O (B)). On the basis of the features of the FUL state obtained from the conditional RHF computation, over, for molecule, the values of r_L^V(p) and r_L^V(p) are more reasonable than those of r_L^O(P) and r_R^O(P).
出处 《计算机与应用化学》 CAS CSCD 北大核心 2005年第3期161-167,共7页 Computers and Applied Chemistry
基金 国家自然科学基金(20272063 20472088)
关键词 轨道定域化 片断分子 片断分子轨道 轨道电子占据数 能量分解 localization of molecular orbitals fragment molecule fragment molecular orbital electronic occupancy of fragment molecular orbital energy partition.
  • 相关文献

参考文献10

  • 1Dorko EA, Hencher JL and Bauer SH. The molecular structure of trimethylenecyclopropane. Tetrahedron, 1968, 24:2425 - 1431.
  • 2Rogers DW and McLafferty FJ. G3 (MP2) calculations of enthalpie sof hydrogenation, Isomerization, and Formation of[ 3 ] - Radialene and related compounds. J Phys Chem A, 2002, 106:1054 -1059.
  • 3Lepetit C, Nielsen MB, Diederich F and Chauvin R. Aromaticity and electron affinity of carbo^k - [ 3 ] radialenes, k = 0, 1, 2. Chem Eur J, 2003, 9:5056 -5066.
  • 4Yu ZH, Li LT, Fu W and Li LP. Conformations of stilbene - like species and new method of energy partition. J Phys Chem A, 1998,102:2016 - 2018.
  • 5Yu ZH, Xuan ZQ, Wang TX and Yu HM. A novel energy partition for gaining new insight into aromaticity and conjugation. J Phys Chem A, 2000, 104:1736 - 1747.
  • 6Yu ZH and Peng XQ. New insight into the nature of electron delocalization:the driving forces for distorting the geometry of stilbene -like species. J Phys Chem A, 2001, 105:8541 -8553.
  • 7Yu ZH and Xuan ZQ. The π-electron delocalization is destabilizing in N-(phenylethenylidene) benzeneamine; a method of separatingout the π and δ and systems in its ketenimine fragment. THEO-CHEM, 1999, 488:101 - 112.
  • 8Csizmadia IG. Molecular Structure and Confirmation. New York:Elsevier Sci Pub Comp, 1982.
  • 9Yu ZH. Quantitative perturbational molecular orbital analysis of the conformational preference of aniline molecule and its intramolecular force. Comput and Chem 1994, 18:95 - 102.
  • 10Kost D, Schlegel HB, Mitchell DJ and Wolfe S. Molecular orbitals from group orbitals. IX. The problem of hybrid lone pairs. Can J Chem, 1979, 57:729.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部