期刊文献+

氧化磷酸化抑制剂对光滑球拟酵母糖酵解速度的影响 被引量:7

Effect of Oxidative Phosphorylation Inhibitors on The Glycolytic Flux in Torulopsis glabrata
下载PDF
导出
摘要 研究了不同浓度电子传递链抑制剂(鱼藤酮和抗霉素A) 和FOF1-ATPase抑制剂(寡霉素) 对光滑球拟酵母胞内ATP水平、葡萄糖消耗速度、糖酵解途径关键酶的影响. 在培养液中添加10 mg/L鱼藤酮和抗霉素A,相对于对照组,胞内ATP分别下降了43%和27.7%,使糖酵解关键酶磷酸果糖激酶(PFK) 的活性分别提高340%和230%,从而导致葡萄糖消耗速度增加360%和240%,丙酮酸生成速度提高了17%和8.5%. 改变胞内ATP水平并不影响糖酵解途径其他关键酶HK、PK活性. 微量的寡霉素(0.05 mg/L) 可使胞内ATP含量下降64.3%,当培养液中寡霉素浓度达到0.4 mg/L时,细胞不能继续生长,葡萄糖消耗速度和丙酮酸的生成速度却随着寡霉素浓度(小于0.6 mg/L) 的增加而增加. 表明氧化磷酸化途径中,ATPase决定着ATP的生成. 降低胞内ATP含量能显著提高PFK活性(r2 = 0.9971) ,葡萄糖消耗速度(r2 = 0.9967) 以及丙酮酸生产速度(r2 = 0.965),葡萄糖消耗速度的增加是糖酵解途径中关键酶PFK活性(r2 = 0.9958) 和PK活性(r2 = 0.8706) 增加所导致的. 这一结果有利于揭示真核微生物细胞中氧化磷酸化与中心代谢途径(酵解) 的关系. The relationship between the concentration of intracellular ATP and the glycolytic flux in Torulopsis glabrata was studied by adding oxidative phosphorylation inhibitors (rotenone, antimycin A and oligomycin). When 10 mg/L rotenone and antimycin A were added to the cell cultures, the concentrations of intracellular ATP were approximately 43% and 27.7% less than that of the control, respectively. The specific activity of phosphofructokinase, one of the rate limiting enzymes of the glycolytic pathway, increased by a factors of 3.4 and 2.3, in comparison of the control respectively. With the specific activity of phosphofructokinase increased, the rate of glucose consumed increased by a factor of 3.6 and 2.4 compared with the control, and the rate of pyruvate produced increased by 17% and 8.5% respectively. The specific activities of hexokinase and pyruvate kinase were not affected by the addition of rotenone or antimycin A. Furthermore, the concentration of intracellular ATP decreased by 64.3% upon addition of 0.05 mg/L oligomycin to the cell culture, and the growth of Torulopsis glabrata was ceased when 0.4 mg/L oligomycin was added to the culture broth at 24 h. Both the rate of glucose consumed and the rate of pyruvate produced were enhanced with increasing the concentration of oligomycin (<0.6 mg/L) in the cell cultures. As a result, the activity of phosphofructokinase (r(2)=0.9971), the rate of glucose consumed (r(2)=0.9967) and the rate of pyruvate produced (r(2)=0.965) were enhanced by a decrease in the energy level of the cell (the concentration of intracellular ATP). Increase of the rate of glucose consumed rooted in elevation of the specific activity of phosphofructokinase (r(2)=0.9958) and pyruvate kinase (r(2)=0.8706). These results are the first answer to the fundamental question of what controls the flux through glycolysis in Torulopsis glabrata.
出处 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2005年第3期251-257,共7页 Progress In Biochemistry and Biophysics
基金 江苏省自然科学基金资助项目(BK2002072) 江苏省高等学校研究生创新计划 留学回国人员科研启动基金 教育部高等学校博士点建设专项资金(20040294003) 资助项目~~
关键词 光滑球拟酵母 氧化磷酸化抑制剂 酵解 ATP Torulopsis glabrata oxidative phosphorylation inhibitors glycolytic pathway ATP
  • 相关文献

参考文献19

  • 1Yokota A, Henmi M, Takaoka N, et al. Enhancement of glucose metabolism in pymvic acid-hyperproducing Escherichia coli mutant defective in F1-ATPase activity. J Ferment Bioeng, 1997, 83:132~138.
  • 2Ruyter G J, Postma P W, van Dam K, et al. Control of glucose metabolism by enzyme IIGlc of the phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli. J Bacteriol, 1991,173 (19): 6184~6191.
  • 3Kacser H, Burns J A. Rate control of biological processes.Cambridge Symposiun. Soc Exp Biol, 1973, 27:65~104.
  • 4Li Y, Hugenholtz J, Chen J, et al. Enhancement of pyruvate production by Torulopsis gtabrata using a two-stage oxygen supply control strategy. Appl Microbiol Biotechnol, 2002, 60 (1~2):101~106.
  • 5de Vries S, Marres C A M. The mitochondrial respiratory chain of yeast: Structure and biosynthesis and the role in cellular metabolism.Biochim Biophys Acta, 1987, 895 (3): 205~239.
  • 6刘立明,陈坚,李华钟,李寅.降低光滑球拟酵母电子传递链活性加速丙酮酸合成[J].微生物学报,2004,44(6):800-804. 被引量:9
  • 7Liu L M, Li Y, Li H Z, et al. Manipulating the pyruvate dehydrogenase bypass of a multi-vitamin auxotrophic yeast Torulopsis glabrata enhanced pyruvate production. Lett Appl Microbiol, 2004, 39 (2): 199~206.
  • 8Sato K, Yoshida Y, Hirahara T, et al. On-line measurement of intracellular ATP of Saccharomyces cerevisiae and pyruvate during sake mashing. J Biosci Bioeng, 2000, 90 (3): 294~301.
  • 9Stanley P E. Extraction of adenosine triphosphate from microbial and somatic acid. Methods Enzymol, 1986, 133:14~22.
  • 10Willis A W. Methods in Enzymology: Carbohydrate Metabolism.New York: Academic Press, 1982.3~165.

二级参考文献16

  • 1Li Y, Chen J, Lun S Y. Biotechnological production of pyruvic acid. Appl Microbiol Biotechnol, 2001, 57: 451-459.
  • 2Li Y, Hugenholtz J, Chen J, et al. Enchancement of pyruvate production by Torulopsis glabrata using a two-stage oxygen supply control strategy. Appl Microbiol Biotechnol, 2002, 60:101-106.
  • 3Shen L C, Atkinson D E. Regulation of pyruvate dehydrogenase from Escherichia coli. Interactions of adenylate energy charge and other regulatory parameters. J Biol Chem, 1970, 245:5974-5978.
  • 4Dietzler D N, Leckie M P, Magnani J L, et al. Evidence for the coordinate control of glycogen synthesis, glucose utilization, and glycolysis in Escherichia coli. II. Quantitative correlation of the inhibition of glycogen synthesis and the stimulation of g
  • 5Jensen P R, Michelsen O, Westerhoff H V. Control analysis of the dependence of Escherichia coli physiology on the H+-ATPase. Proc Natl Acad Sci USA, 1993, 90:8068-8072.
  • 6Jensen P R, Michelsen O. Carbon and energy metabolism of ATP mutants of Escherichia coli. J Bacteriol, 1992, 174:7635-7641.
  • 7Sekine H, Shimada T, Hayashi C, et al. H+-ATPase defect in Corynebacterium glutamicum abolishes glutamic acid production with enhancement of glucose consumption rate. Appl Microbiol Biotechnol, 2001, 57:534-540.
  • 8O'Connor R M, McArthur C R, Clark-Walker G D. Respiratory-deficient mutants of Torulopsis glabrata, a yeast with circular mitochondrial deoxyribonucleic acid of 6 μm. J Bacteriol, 1976, 126:959-968.
  • 9Sato K, Yoshida Y, Hirahata T, et al. On-line measurement of intracellular ATP of Saccharomyces cerevisiae and pyruvate during sake mashing. J Biosci Bioeng, 2000, 90:294-301.
  • 10Stanley P E. Extraction of adenosine triphosphate from microbial and somatic acid. Methods Enzymol, 1986, 133:14-22.

共引文献8

同被引文献181

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部