摘要
提出一种新的基于向量方法的自回归和运动平均(ARMA)模型系统辨识器,并给出了其参数的统计分析模型。应用结果表明,向量ARMA算法和最小二乘法LS算法相比,在一定条件下,其预测误差精度提高了约1 2dB;且该系统模型不受分离向量参数的影响。使用非线性函数核,系统将会成为一个鲁棒的非线性辨识过程。
To present a new approach to auto-regressive and moving average(ARMA) modeling based on the support vector method,a statistical analysis of the characteristics of the proposed method is carried out.The results show, compared SVM-ARMA with LS,precisions of validation prediction error of the SVM-ARMA improved 1.2 dB than LS in some conditions. Besides, the effect of outliers can be cancelled.With using nonlinear kernels,the system will lead to robust, nonlinear system identification procedures.
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2005年第2期39-41,48,共4页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
广东省自然科学基金资助项目(04105503)
佛山市科技发展专项资金资助项目(04010052)