期刊文献+

一种基于向量的鲁棒ARMA系统辨识器 被引量:1

A Robust ARMA System Identification Based on the Vector Method
下载PDF
导出
摘要 提出一种新的基于向量方法的自回归和运动平均(ARMA)模型系统辨识器,并给出了其参数的统计分析模型。应用结果表明,向量ARMA算法和最小二乘法LS算法相比,在一定条件下,其预测误差精度提高了约1 2dB;且该系统模型不受分离向量参数的影响。使用非线性函数核,系统将会成为一个鲁棒的非线性辨识过程。 To present a new approach to auto-regressive and moving average(ARMA) modeling based on the support vector method,a statistical analysis of the characteristics of the proposed method is carried out.The results show, compared SVM-ARMA with LS,precisions of validation prediction error of the SVM-ARMA improved 1.2 dB than LS in some conditions. Besides, the effect of outliers can be cancelled.With using nonlinear kernels,the system will lead to robust, nonlinear system identification procedures.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第2期39-41,48,共4页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 广东省自然科学基金资助项目(04105503) 佛山市科技发展专项资金资助项目(04010052)
关键词 ARMA建模 支持向量方法 系统辨识器 时间序列 ARMA modeling support vector method system identification times series
  • 相关文献

参考文献6

  • 1SIDIROPOULOS N D,DIMIC G Z.Blind multiuser detection in W-CDMA systems with large delay spread[J]. IEEE Signal Processing Lett,2003,8:87-89.
  • 2VAPNIK V. The nature of statistical learning theory[M]. New York: Spring-Verlag,1995.
  • 3SCHOLKOPF B,SUNG K.Comparing support vector machines with gaussian kernels to radial basis function classifiers[J].IEEE Trans Signal Processing,1997,45:2758-2765.
  • 4PONTIL M,VERRI A.Support vector machines for 3D object recognition[J].IEEE Trans Pattern Anal Machine Intell,1998,20:637-646.
  • 5BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining Knowl Discovery.1998,22:1-32.
  • 6ROJO-ALVAREZ J L,de PRADO-CUMPLIDO M, ANIBAL R.Support vector method for robust system identification[J].IEEE Trans on Signal Processing,2004,52:155-163.

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部