摘要
本文对环Z/(2 ̄d)上具有本原多项式的序列诸相位乘积的线性复杂度进行了研究,给出了等距抽样乘积序列的线性复杂度的下界,在此基础上,讨论了不等距抽样的积序列的线性复杂度并给出了类似的下界。
This paper deals with the linear complexity of the sample products of sequences withprimitive polynomial in ring Z/(2 ̄d),and gives the lower bound on the linear complexityof product sequences of equal distance samples.It further discusses the case of unequal dis-tance samples and presents a similar lower bound.
关键词
环Z/(2^d)
线性复杂度
递归序列
ring Z / (2 ̄d),linear complexity,lower bound,unequal distance sample.