期刊文献+

具有温度补偿功能的光纤光栅传感解调系统 被引量:11

A Novel Fiberg Grating Sensing and Demodulating System with Temperature Compensation
原文传递
导出
摘要 从理论和实验上研究了三角形光纤布拉格光栅的温度特性,结果表明:三角形光纤布拉格光栅谐振波长的温度变化率与普通光纤光栅的相同,并且其光谱形状不随温度的变化而改变。利用三角形光纤光栅光谱的这一温度特性,设计了一种具有温度补偿功能的应变传感解调系统。该系统利用斜线光纤光栅将光纤光栅应变传感的波长编码信息转换为强度,并且用信号强度与参考光强度的比值作为应变的度量值。研究表明,应变与应变度量值成线性关系,同时系统具有温度补偿功能。在三种不同的温度条件下,对悬臂梁的应变测试结果显示:在实验测量范围内,温度变化1 ℃导致的应变测量误差小于6微应变。由于采用信号强度和参考光强度的比值作为应变的度量值,避免了宽带光源的平坦度及波动对测量结果的影响。 The temperature characteristics of triangular fiber Bragg gratings have been studied theoretically and experimentally. The results show that the rate of resonant wavelength with temperature of the triangular fiber Bragg gratings is the same as that of ordinary fiber Bragg gratings, and the spectral shape of the grating can be kept without being affected by temperature. For the characteristics, a novel strain sensing and demodulating system with temperature compensation is designed. In the system, the wavelength code of strain is converted into the signal intensity, and the ratio of the signal intensity and the referent light intensity is used as the measuring value of strain. Theoretical and experimental researches indicate that the strain is proportional to the measurement value, and the system has the temperature compensation property. At three different temperature conditions, the strain test results of the cantilever experiments show that the measurement error of strain is less than 6 micro-strain /℃. For adopting the ratio of the signal intensity and the referent light intensity as the measuring value of strain, it avoids the effect to the test results coming from the flatness and fluctuating of the broad band light source.
出处 《光学学报》 EI CAS CSCD 北大核心 2005年第3期307-311,共5页 Acta Optica Sinica
基金 国家863计划(2002AA313110) 国家973计划(2003CB314906) 武汉理工大学博士启动基金资助课题
关键词 导波与光纤光学 光纤光栅传感 应变测量 三角形光纤布拉格光栅 温度补偿 guided wave and fiber optics fiber grating sensing strain measurement triangular fiber Bragg grating temperature compensation
  • 相关文献

参考文献4

二级参考文献25

  • 1Hill K O, Fujii Y, Johnson D Y, et al. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl Phys Lett, 1978,32( 1 ) :647 - 649.
  • 2Kawasaki B S, Hill K O, Johnson D C, et al. Narrow-band Bragg reflectors in optical fibers. Opt Leu, 1978,3( 1 ) :66 -68.
  • 3Morey W W, Meltz G, Glenn W H. Fiber optic Bragg grating sensors. Proc SPIE, 1989,1169:98 - 107.
  • 4Giles C B. Lightwave applications of fiber Bragg gratings.Lighaoa- Technol, 1997,15(8) :1391 - 1404.
  • 5Spirin V V, Shlyagin M G, Mirdonov S V, et al. Fiber Bragg grating sensor for petroleum hydrocarbon lake detection. Opt Lasers Eng, 2000,32(5) :497 -503.
  • 6Rao Y J. Recent progress in application of in-fiber Bragg grating sensors. Opt & Las,1999,31(4) :297 -324.
  • 7Xu M G, Beekie L,Chow Y T,et al. Optical in-fiber grating high presssure sensor. Electron Lett, 1993,29 (4) : 398 - 399.
  • 8Yoffe G W, Krug P A, Ouellett F, et al. Passive temperature-compensating package for optical fiber gratings. Appl Opt, 1995,34(30) : 6859 - 6861.
  • 9Samuel I-En Lin. Temperature-compensating device with central-wavelength tuning for optical fiber gratings. Opt Eng, 2001,40(5) : 698 -702.
  • 10Malitson I H. Interspecimen comparison of the refractive index of fused silica. J Opt Soc Amer, 1965,55(9) :1205- 1209.

共引文献54

同被引文献132

引证文献11

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部