摘要
假设λ1,λ2,λ3,λ4 是非零实数,并且不同一符号,η是实数,λ1 /λ2 是无理数,那么有无穷多有序素数组(p1,p2,p3,p4 )使得 |η+λ1p1 +λ2p2 +λ3p23 +λ4p24 |< (maxpj)-1/14 (logmaxpj)7.
Suppose that λ_1,λ_2,λ_3,λ_4 are non-zero real numbers and they are not all of the same sign, that η is real, and that λ_1/λ_2 is irrational, then there are infinitely many ordered primes (p_1,p_2,p_3,p_4) such that |η+λ_1 p_1+λ_2 p_2+λ_3 p^2_3+λ_4 p^2_4|<(max p_j)^(-1/14)(log max p_j)~7.
出处
《河南大学学报(自然科学版)》
CAS
北大核心
2005年第1期5-9,共5页
Journal of Henan University:Natural Science
基金
国家自然科学基金资助项目(10171076)
上海市科委基金资助项目(03JC14027)
关键词
非线性
素变数
丢番图不等式
圆法
nonlinear
prime variables
diophantine inequality
circle method