摘要
利用Kalman滤波器训练图像修复RBF网络模型的权值与基函数的中心,由于利用滤波器测量噪声的协方差阵实现整个模型的图像降噪功能,新算法边缘修复能力较强.本文通过仿真,检验了新模型的降噪能力;结果证明,新算法较一般的维纳滤波器,均值滤波降噪能力明显提高.
This paper readopts a new kind of Kalman filter to train the Radial Basis Function (RBF) neural networks weight and the centers of the base functions, through setting the measurement noise s covariance matrix, the new algorithm realize noise-filtering capacity of the model, the remarkable character of the new algorithm is its powerful boundary restoration capacity;Through the simulation, this paper compare the new algorithm and the wiener and mean filter algorithm, the result shows that the new algorithm improve the models performance perfectly in the increment of the signal noise ratio aspects.
出处
《小型微型计算机系统》
CSCD
北大核心
2005年第4期676-679,共4页
Journal of Chinese Computer Systems