期刊文献+

图像修复RBF模型的Kalman改进算法 被引量:2

Improved Image Restoration RBF Model Based on the Kalman Filter
下载PDF
导出
摘要 利用Kalman滤波器训练图像修复RBF网络模型的权值与基函数的中心,由于利用滤波器测量噪声的协方差阵实现整个模型的图像降噪功能,新算法边缘修复能力较强.本文通过仿真,检验了新模型的降噪能力;结果证明,新算法较一般的维纳滤波器,均值滤波降噪能力明显提高. This paper readopts a new kind of Kalman filter to train the Radial Basis Function (RBF) neural networks weight and the centers of the base functions, through setting the measurement noise s covariance matrix, the new algorithm realize noise-filtering capacity of the model, the remarkable character of the new algorithm is its powerful boundary restoration capacity;Through the simulation, this paper compare the new algorithm and the wiener and mean filter algorithm, the result shows that the new algorithm improve the models performance perfectly in the increment of the signal noise ratio aspects.
出处 《小型微型计算机系统》 CSCD 北大核心 2005年第4期676-679,共4页 Journal of Chinese Computer Systems
关键词 RBF 神经网络 KALMAN滤波器 ISNR RBF neural network Kalman filter increment of signal-noise ratio
  • 相关文献

参考文献4

  • 1Kaoru Inoue, Youji Iiguni,Hajime Maeda. Image restoration using the RBF network with variable regularization parameters [J]. Neurocomputing, 2003, 50:122-136.
  • 2Iulian B. Ciocoiu. Networks training using a dual extended Kalman filter[J]. Neurocomputing, 2002,48: 321-340.
  • 3Dan Simon Training radial basis neural network with the extended Kalman filter[J]. Neurocomputing, 2002,28: 211-252.
  • 4Birgmeier M. A fully Kalman-trained radial basis function networkfor nonlinear speechmodeling[C]. IEEE International Conference on Neural Networks, Perth, Western Australia, 1995,259-264.

同被引文献18

  • 1张晓玲,沈兰荪,Lam Kin-Man.一种基于分形码和模型约束的图像放大算法[J].电子学报,2006,34(3):433-436. 被引量:11
  • 2黄慧,周健,舒华忠,罗立民.基于模糊异质扩散的图像去噪方法[J].数据采集与处理,2007,22(1):67-71. 被引量:3
  • 3Bertalmio M,Sapiro G,Caselles V,et al.Image inpainting .Proceedings of ACM SIGGRAPH .New Orleans:ACM Press,2000.417-424.
  • 4Chan T,Shen J H.Mathematical models for local non-texture inpaintings[J].SIAM Journal on Applied Mathematics,2002,62(3):1019-1043.
  • 5T Chan,J Shen.Non-Texture Inpainting by Curvature-Driven Diffusions(CDD) .Technical Report CAM 00-35,Image Processing Research Group,UCLA,2000.
  • 6Oliveira M,Bowen B,Mc Kenna R,et al.Fast digital image inpainting[J].Imaging and Image Processing,2001,(9):261-266.
  • 7Masnou S.Disocclusion:a variational approach using level lines[J].IEEE Transactions on Image Processing,2002,11(2):68-76.
  • 8Chant F,Shen J,Vese L.Variational PDE models in image processing[J].Notices of American Mathematical Society,2006,50(1):14-26.
  • 9Elad M,Starck J L,Querre P,et al.Simultaneous cartoon and texture image inpaiting using morphological component analysis (MCA)[J].Applied and Computational Harmonic Analysis,2005,19:340-358.
  • 10Fortier M Fa,Ziou D.A global approach for solving evolutive heat transfer for image denoising and inpainting[J].IEEE Transactions on Image Processing,2006,15(9):2558-2574.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部