摘要
Three cement samples were prepared, includi ng OPC consisted of 100wt% portland cement, PFA consisted of 70wt% portland cemen t and 30wt% fly-ash, and CA consisted of 70wt% portland cement and 30wt% modifi ed fly ash. The strength of hardened cement paste of these samples was tested an d their pore structures were determined by a mercury intrusion porosimeter. More over,the data of the pore structures of three samples were comprehensively analy zed. The relations between the pore structures and the compressive strength of t he three samples were studied. The experimental results show that the relations between the porosity determined by the mercury intrusion porosimeter and the com pressive strength are not notable, and the total pore surface area, the average pore diameter and the median pore diameter could be used to explain the differen ce of the strength of the tested samples.
Three cement samples were prepared, includi ng OPC consisted of 100wt% portland cement, PFA consisted of 70wt% portland cemen t and 30wt% fly-ash, and CA consisted of 70wt% portland cement and 30wt% modifi ed fly ash. The strength of hardened cement paste of these samples was tested an d their pore structures were determined by a mercury intrusion porosimeter. More over,the data of the pore structures of three samples were comprehensively analy zed. The relations between the pore structures and the compressive strength of t he three samples were studied. The experimental results show that the relations between the porosity determined by the mercury intrusion porosimeter and the com pressive strength are not notable, and the total pore surface area, the average pore diameter and the median pore diameter could be used to explain the differen ce of the strength of the tested samples.
基金
Funded by the National Key Fundamental Research and Develop ment Program of China(2001CB610703)