期刊文献+

PCNN和Otsu理论在图像增强中的应用 被引量:14

Applications of PCNN and Otsu Theories for Image Enhancement
原文传递
导出
摘要 提出了基于改进的脉冲耦合神经网络(PCNN)与Otsu的图像增强新方法。该方法对 PCNN进行了改进,而用改进后的PCNN进行图像去噪处理,继而用Otsu方法寻找最佳灰度阈值后进行图像增强。仿真实验表明,该方法滤波后信噪比(PSNR)为18.930 5,而高斯滤波为 5.408 7;同时又能根据图像灰度性质自动选取最佳阈值,并对自适应分割后图像进行不同的灰度变换,使图像得到有效增强。仿真结果证明了该方法的有效及合理性。 A new enhancement method of image based on pulse coupled neural network (PCNN) and Otsu was proposed, in which improved PCNN is used to remove the noise and Otsu is used to search best gray threshold value for image enhancement. The results of experiments show the algorithm can remove noises more effectively than traditional method (PSNR is 18.9305 for the proposed algorithm, 5.4087 for gauss algorithm), and the best threshold can also be achieved. In additional, different gray switch function is taken on the basis of the best threshold. Consequently, the remarkable effect of image enhancement is gained.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2005年第3期358-362,共5页 Journal of Optoelectronics·Laser
关键词 脉冲耦合神经网络 PCNN Otsu理论 阈值 图像增强 Adaptive algorithms Computer simulation Image segmentation Interference suppression Neural networks
  • 相关文献

参考文献6

  • 1刘维一,于德月,王肇圻,母国光.用迭代法消除数字图像放大后的模糊[J].光电子.激光,2002,13(4):398-400. 被引量:9
  • 2杨照华,浦昭邦,祁振强.保持图像细节的多尺度形态滤波的新方法[J].光电子.激光,2003,14(8):862-865. 被引量:7
  • 3Yasuhiro Ota.VLSI structure for static image processing with pulse-coupled neural network[J].IEEE Trans Neural Network,2002,10:3221-3226.
  • 4Johnson J L,Padgett M L.PCNN models and applications[J].IEEE Trans on Neural Networks,1999,10(3):480-498.
  • 5FU Zhong-liang.Threshold value selection method of image[J].Computer applications,2000,20(5):37-39.
  • 6Skourikhine A N.A pulse couple neural network for image smoothing and segmentation[A].International Symposium on Computational Intelligence[C].Kosice,Slovakia,2000.

二级参考文献11

  • 1J Serra. Morphological filtering=An over view[J]. Signal processing, 1994,38( 1 ): 3-11.
  • 2Johan Van Horebeek, Ernesto Tapia-Rodrigez. The approximation of a morphological opening and closing in the presence of noise[J]. Signal Processing, 2001,81(9):1991-1995.
  • 3S Mukhopadhyay, B Chanda. An edge preserving noise smoothing technique using multiscale morphology [J].Signal Processing, 2002,82 (4) : 52;7-544.
  • 4P Maragos. Pattern spectrum and multiscale shape representation[J]. IEEE Trans. Pattern Anlysis end Machine Intelligence, 1989 ,7(11): 701-716.
  • 5A Toet. A hierarchical morphological image decomposition[J]. Pattern Recognition Lett., 1990, 11 (4); 267-274.
  • 6WANG yunshan, YANG Fujun, ZHANG Qinghua. 3-D Surface Optical Measurement Based on Linear-Phase FIR Filter[J]. J. of Optoelectronics · Laser (光电子·激光) ,1997,8(5) :394-397. (in Chinese).
  • 7Wamg zhou. Zhamg David. Progressive switching median filter for the removal of impulse noise from highly corrupted images[J]. IEEE Trans. On Circuits end Systems, Ⅱ:Analog and Digital Signal Processing, ]999,46 ( 1 ) : 27-34.
  • 8王英民,马远良,齐华.病态条件下的逆卷积问题及其多参数最佳化解[J].西北工业大学学报,1997,15(2):208-212. 被引量:2
  • 9王汝霖,崔健,张海智,王新生,刘智深.模糊图象消除方法在纤维密度检测和水下图象处理中的应用[J].青岛海洋大学学报(自然科学版),1998,28(4):663-668. 被引量:1
  • 10孙怡,吴艳冬,胡家升.基于样条子波的多尺度图像边缘检测[J].光电子.激光,2001,12(5):525-528. 被引量:3

共引文献14

同被引文献133

引证文献14

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部