期刊文献+

基于非线性PCA的微气体传感器阵列信号处理 被引量:1

Nonlinear PCA based micro gas sensor array signal processing
原文传递
导出
摘要 在线性叠加模型基础上提出了气体传感器对混合气体的非线性叠加模型,并引入了非线性主成分分析(NonlinearPrincipalComponentAnalysis,NLPCA)法对微传感器阵列的信号进行处理。使用该模型对由4个微热板式气体传感器组成的阵列的信号进行了分析,对照基于线性叠加模型的主成分分析法(PrincipalComponentAnalysis,PCA)的识别结果,说明该方法能够提高对混合气体识别和量化的准确度。 A nonlinear superposition model was proposed based on the common linear additive model the micro gas sensor array signal processing to improve the precision of quantification and identification. According to the nonlinear model, the Nonlinear Principal Component Analysis (NLPCA) was proposed to process the response signals obtained from a 4 Micro-hotplate (MHP) based gas sensor array. Com-pared with the analyzing results obtained from Principal Component Analysis (PCA), which bases on the linear additive model, the accuracy of gas component identification and concentration quantification are improved greatly.
出处 《功能材料与器件学报》 EI CAS CSCD 北大核心 2005年第1期122-126,共5页 Journal of Functional Materials and Devices
基金 国家自然科学基金(59995550-5 90207003) S863(2003AA404180) 香港RGC HKUST6065/99E HIA98/99EG06
关键词 气体传感器阵列 混合气体分析 非线性主成分分析法 gas sensor array gas mixture analysis nonlinear principal component analysis
  • 相关文献

参考文献9

  • 1Philip C H Chan, Guizhen Yan, Lie- yi Sheng, et al.Anintegrated gas sensor technology using surface micro- machining [J]. Sensors and Actuators B, 2002, 82: 277- 283.
  • 2朱长纯,于丽娟,魏培永,韦玮,刘君华,刘光泗.用神经网络提高SO_2传感器的检测速度[J].功能材料与器件学报,2001,7(1):31-34. 被引量:1
  • 3Julian W Gardner,Philip N Bartlett. Electronic Noses Principles and Applications [M]. UK Oxford University Press, 1999. 117- 120.
  • 4Zaromb S, Stetter J R. Theoretical basis for identification and measurement of air contaminants using an array of sensors having partly overlapping selectivities [J]. Sensorsand Actuators, 1984, 6: 225- 243.
  • 5Julian W Gardner. Detection of Vapours from a MultisensorArray Using Pattern Recognition Part 1.Principal Component and Cluster Analysis [J]. Sensors and Actuators B, 1991, 4:109- 115.
  • 6Lie- yi Sheng, Zhenan Tang, Jian Wu, et al. A low- power CMOS compatible integrated gas sensor using masklesstin oxide sputtering[J]. Sensors and Actuators B, 1998, 49: 81- 87.
  • 7Zhenan Tang, Samuel K H Fung, Darwin T W Wong, et al.An automated precision gas sensor characterization system[A]. in Proceedings of IEEE Tencon 95 on Microelectronicsand VLSI[C]. Hong Kong: 1995. 187- 190.
  • 8Juha Karhunen, Petteri Pajunen. Blind source separation and tracking using nonlinear PCA criterion: A least- squaresapproach [A]. IEEE Neural Networks, International Conference on[C]. 1997. 4: 2147- 2152.
  • 9Juha Karhunen, Petteri Pajunen, Erkki Oja. The nonlinear PCA criterion in blind source separatio: Relations with otherapproaches [J]. Neurocomputing, 1998,22:5- 20.

二级参考文献3

  • 1Mitsutoshi Wu H,Sensors Actuators.B,1993年,12卷,11页
  • 2Mu S L,J Electroanal Chem Interf Electrochem,1991年,304卷,7页
  • 3Huang W S,J Chem Soc Faraday Trans I,1986年,82卷,2385页

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部