期刊文献+

废用对松质骨结构的影响 被引量:1

Effects of Disuse on Trabecular Bone Structure
下载PDF
导出
摘要 正常骨结构形态的变化总是与力学环境相适应的 ,废用状态可引起松质骨结构的较大改变。本研究将有限元分析与带有调整目标的骨再造方程相结合 ,模拟废用对松质骨结构的影响。数值模拟表明 ,当某方向载荷变小时 ,此方向的骨小梁变细 ,结构质量下降 ;当某方向载荷急剧变小 (严重废用 ,如长期卧床 )时 ,此方向很多骨小梁消失 ,废用破坏了松质骨结构的完整性 ;当从废用状态恢复到正常活动时 ,消失的骨小梁不能恢复。这种废用状态引起的结构完整性变化是不可逆的。废用引起的松质骨孔隙变大 ,可能是老年人骨质疏松发生的原因之一。 Healthy bone structure always changes to adapt to its mechanical environment. Disuse can cause a remarkable change of trabecular bone structure. The effects of disuse on trabecular bone structure was simulated, using the bone (re)modeling model with goals of physiological regulation, based on finite element analysis. The results showed that after the load in some direction became small, the trabecular alone the direction got thin, and structural mass decreased. After the load in one direction rapidly became small, such as staying long in bed, some trabecular alone the directions disappeared, which damaged the integrality of trabecular bone structure. After the original loads came back, the trabecular architecture simulated didn′t recover and was not so same as the original architecture. The effects of disuse to trabecular bone structure are irreversible. The bigger holes in trabecular bone structure can be caused by disuse, which may be one of causes of osteoporosis in ages.
出处 《生物医学工程研究》 2004年第3期129-132,148,共5页 Journal Of Biomedical Engineering Research
基金 国家自然科学基金资助项目 (10 172 0 93) 中国博士后基金资助项目 (2 0 0 30 34177)
关键词 松质骨结构 废用状态 有限元 数值模拟 松质骨孔隙 Trabecular bone structure Disuse Finite element Simulation
  • 相关文献

参考文献10

  • 1[1]Jee W S S., Li X J. Adaptation of cancellous bone to overloading in the adult rat: a single photon absorptiometry and histomorphometry study[J]. Anat Rec,1990,227:418-426.
  • 2朱兴华,董心,张义民,李振宇.长骨功能适应性研究[J].中国生物医学工程学报,1993,12(2):106-110. 被引量:6
  • 3[3]Rubin C T, Lanyon L E, Massachusetts G. Regulation of bone formation by applied dybamic loads[J]. J Bone Joint Surgery,1984,66-A(3):397-402.
  • 4[4]Cowin S C and Hegedus D H. Bone remodeling 1: theory of adaptive elasticity[J]. J Elasticity, 1976,6:313-326.
  • 5[5]Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Sloof T J. Adaptive bone-remodeling theory applied to prosthetic-design analysis[J].J Biomechanics, 1987,20:1135-1150.
  • 6[6]Fyhrie D P, Schaffler M B. The adaptation of bone apparent density to applied load[J]. J Biomech, 1995,28:135-146.
  • 7[7]Mullender M G, Huiskes R and Weinans H. A physiological approach to the simulation of bone remodeling as a self-organizational control process J[J]. Boimechanics, 1994,27(11):1389-1394.
  • 8黎小坚,Harold M Frost,朱绍舜,柯华珠.基础骨生物学新观[J].中国骨质疏松杂志,2001,7(2):152-174. 被引量:73
  • 9[10]Huiskes R, Weinans H, Summer DR, Fudala B, Turner H J, Grootenboer HJ, Galante J. Stress-shielding, stress-bypassing and bone resorption around press-fit′ and bone ingrowth THA. Trans 35th orthop[J]. Res, Soc, 1989,14:529.
  • 10[11]Frost HM. From Wolff′s law to the Utah paradigm: insights about bone physiology and its clinical applications[J]. Anat Rec, 2001,262(4):398-419.

二级参考文献55

  • 1[20]Teitelbaum SL.Bone resorption by osteoclasts.Science,2000,289:1504-1508.
  • 2[21]Puzas EJ,Lewis GD.Biology of osteoclasts and osteoblasts.In:Orthopaedics.Principles of basic and clinical science,Chapter 3.Bronner F and Worrell RV,Eds,Boca Raton:CRC Press,1999.
  • 3[22]Miller SC,Bowman BM,Smith JM et al.Characterization of endosteal bone-lining cells from fatty marrow bone sites in adult beagles.Anat Rec,1980,198:163.
  • 4[23]Miller SC,Jee WSSS.The bone lining cell:a distinct phenotype?.Calcif Tissue Int,1992,41:1.
  • 5[24]Frost HM.Bone modeling and skeletal modeling errors.Springfield:CC Thomas,1973.
  • 6[25]Frost HM.Osteoporoses;new concepts and some implications for future diagnosis,treatment and research(based on insights from the Utah paradigm),Berlin:Ernst Schering Research Foundation AG,1998:7.
  • 7[26]Farost HM.Bone development during childhood,a tutorial(some insights of a new paradigm).In:Paediatric osteology,Schnau E, Ed,Amsterdam:Elsevier,1996:3.
  • 8[27]Frost HM,A determinant of bone architecture:the minimum effective strain.Clin Orthop Rel Res,1983,175:286.
  • 9[28]Mundy FR.Bone remodeling.In:Primer on the metabolic bone diseases and disorders of mineral metabolism,Fourth edition,Favus MJ, Ed,Lippincott,Williams and Wilkins,1999,Chapter 4.
  • 10[29]Cowin SC,Mechanical modeling of the stress adaptation process in bone.Calcif Tissue Int 1984,36:598.

共引文献77

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部