期刊文献+

Incremental frequent tree-structured pattern mining from semi-structured data

下载PDF
导出
摘要 The paper studies the problem of incremental pattern mining from semi-structrued data. When a new dataset is added into the original dataset, it is difficult for existing pattern mining algorithms to incrementally update the mined results. To solve the problem, an incremental pattern mining algorithm based on the rightmost expansion technique is proposed here to improve the mining performance by utilizing the original mining results and information obtained in the previous mining process. To improve the efficiency, the algorithm adopts a pruning technique by using the frequent pattern expansion forest obtained in mining processes. Comparative experiments with different volume of initial datasets, incremental datasets and different minimum support thresholds demonstrate that the algorithm has a great improvement in the efficiency compared with that of non-incremental pattern mining algorithm.
出处 《High Technology Letters》 EI CAS 2005年第1期6-8,共3页 高技术通讯(英文版)
基金 国家自然科学基金,安徽省自然科学基金
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部