期刊文献+

紫外光聚合法制备L-DBTA手性分子印迹聚合物的研究 Ⅰ.紫外光聚合制备条件 被引量:13

Study on the Molecular Imprinted Polymers with Recognition Properties Towards to Dibenzoyl-L-tartaric Acid Prepared by Photo-Polymerization Method Ⅰ. Photo-polymerization Conditions
下载PDF
导出
摘要 以丙烯酸为功能单体,二苯甲酰 L 酒石酸(L DBTA)为模板分子,三羟甲基丙烷三丙烯酸酯(TMPTA)为交联剂,采用光聚合方法合成了 L DBTA手性分子印迹聚合物,讨论了功能单体种类、功能单体用量、交联剂用量、引发剂用量、三乙胺用量、光聚合温度、光聚合时间、光强度等对L DBTA手性分子印迹聚合物合成的影响。通过L DBTA手性分子印迹聚合物对底物的结合实验分析,表明手性分子印迹聚合物对L DBTA具有很好的识别性, L DBTA的选择性比二苯甲酰 D 酒石酸(D DBTA)高,其分离因子可达5.41。 Using a functional monomer(methyl methacrylate, acrylamide, ethyl acrylate or acrylic acid) and a crosslinker(TMPTA), molecularly imprinted polymers(MIPs) with recognition properties to dibenzoyl-L-tartaric acid(L-DBTA) were prepared by photopo-polymerization method in the presence of a template(L-DBTA) in acetonitrile solution.The experimental results indicated that the MIPs had higher L-DBTA binding ability than D-DBTA′s and also higher than corresponding non-imprinted polymers. The binding ability of MIPs is the highest at template (n_(L-DBTA)/n_(AA)/n_(TMPTA)= 1/4/12 as photo-polymerization time was 1.5h and photopolymering in a ice-water bath under a 100W ultraviolet lamp about 0.07m. Based on the optimal experimental results, it was found that the highest separation factor (α) of L-DBTA/D-DBTA of the MIPs could reach to be 5.41.
出处 《功能高分子学报》 CAS CSCD 北大核心 2005年第1期36-41,共6页 Journal of Functional Polymers
基金 国家重点基础研究发展计划(973计划)资助(2003CB615705)
关键词 紫外光聚合法 L-DBTA 分子印迹技术 聚合物 手性识别 阻聚剂 二苯甲酰酒石酸 MIPs dibenzoyl-L-tartaric acid photo-polymerization chiral recognition
  • 相关文献

参考文献13

  • 1J Haginaka, H Takekira, K Hosoya, et al. Molecularly imprinted uniform-sized polymer-based stationary phase for naproxen[J].J Chromatogr A, 1998,816:113-120.
  • 2Borje Sellergren. Imprinted chiral stationary phases in high-performance liquid chromatography[J]. J Chromat A, 2001,906: 227--252.
  • 3Tatiana A S , Heike Matuschewski , Sergiy A P,etc. Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization[J]. J Chromat A, 2001,907: 89--99.
  • 4Stevenson Derek. Molecular imprinted polymers for solid-phase extraction[J]. Trends in Analytical Chemistry Volume, 1999,18:154--158.
  • 5Yoshikawa, Masakazu Yonetani, Kyoichi. Molecularly imprinted polymeric membranes with oligopeptide tweezers for optical resolution[J]. Desalination, 2002,149:287-292.
  • 6Venn Richard F, Goody Robin. Making an impression: synthesis and use of molecular imprints of a development compound[J].Eur J Pharm Sci,1996, 4:49.
  • 7Sellergren, Borje. Noncovalent molecular imprinting: antibody-like molecular recognition in polymeric network materials[J].Trends in Analytical Chemistry, 1997,16:310--320.
  • 8Yano Kazuyoshi, Karube Isao, Molecularly imprinted polymers for biosensor applications[J]. Trends in Analytical Chemistry,1999,18 : 199-- 204.
  • 9Bruggemann, Oliver. Chemical reaction engineering using molecularly imprinted polymeric catalysts[J]. Analytica Chimica Acta,2001,435:197--207.
  • 10Hayden O, Bindeus R, HaderspSck Claudia, et al. Mass-sensitive detection of cells, viruses and enzymes with artificial receptors[J]. Sensors and Actuators B: Chemical, 2003,91: 316--319.

同被引文献289

引证文献13

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部