期刊文献+

用偏最小二乘法反演二类水体的水色要素 被引量:17

Retrieval of Oceanic Color Constituents from Case n Water Reflectance by Partial Least Squares Regression
下载PDF
导出
摘要 简要介绍了偏最小二乘法的原理、算法及优点。将该方法应用于黄海和南海二类水体光谱的水色要素反演,交叉检验结果表明反演精度高,预报相对误差不超过38%。该方法应用于加有5%随机噪声的人工合成光谱的水色要素反演,结果表明模型的稳健性强,预报相对误差不超过5%。研究结果表明,偏最小二乘法适合于处理变量多样本数又少的问题,适合于从二类水体光谱中提取水色要素信息。 It is generally recognized that Case 2 waters are more complex than Case 1 waters in their composition and optical properties. The standard algorithms (usually band ratio) in use today for chlorophyll retrieval from spectral data break down in Case 2 waters. Hyperspectral ocean color sensing may be necessary for Case 2 waters' constituents retrieval. However, hyperspectral data are usually highly correlated and statistical algorithms such as principal component inversion have been employed in ocean color sensing. In the present paper the principle, algorithm and advantage of another statistical algorithm-partial least squares regression (PLS) are briefly described. Then PLS is applied to the retrieval of oceanic color constituents from China Yellow Sea and South China Sea field reflectances, which are typical of Case 2 waters. Cross-validation of PLS analysis shows that the retrieval accuracy is good and the predicted relative error of chlorophyll-a is less than 37% . In order to check the robusticity of the PLS inversion model, PLS is also applied to the retrieval of oceanic color constituents from computed reflectances to which 5% noise is added randomly. The cross-validation results of PLS analysis on simulated data show that the model is robust and the predicted relative error of the three components (chlorophyll-a, Total Suspended Matter and Yellow Substance) is less than 5%. Pre-processing of data is essential for the constituents' concentration ranging over several magnitudes. As an empirical algorithm, the training data set for PLS should be typical that the data points distribute uniformly in the concentration range. It is suggested that PLS be suitable for the regression problems which have a few observations but a lot of spectra variables, e. g. the retrieval of oceanic color constituents from Case 2 water reflectance.
出处 《遥感学报》 EI CSCD 北大核心 2005年第2期123-130,共8页 NATIONAL REMOTE SENSING BULLETIN
基金 国家海洋局重点青年基金(项目编号Y00801)中央级科研院所长基金资助
关键词 二类水体光谱 水色要素反演 偏最小二乘法 case Ⅱ water spectra oceanic color constituents' retrieval partial least squares regression
  • 相关文献

参考文献9

  • 1李铜基,唐军武,陈清莲,任洪啟.光谱仪测量离水辐射亮度的方法[J].热带海洋学报,2001,20(4):56-60. 被引量:30
  • 2曹文熙,钟其英,杨跃忠.南海水色遥感的主因子分析[J].遥感学报,1999,3(2):112-115. 被引量:20
  • 3巩彩兰,樊伟.海洋水色卫星遥感二类水体反演算法的国际研究进展[J].海洋通报,2002,21(2):77-83. 被引量:14
  • 4唐军武 王晓梅 宋庆君.[A]..第十四届全国遥感技术学术交流会[C].青岛,2003.10..
  • 5Neumann A, Krawczyk H. Principal Component Inversion, IOCCG Training Course on Remote Sensing of Ocean Color [ R ].Ahmedabad, India, February, 2001.
  • 6王慧文.偏最小二乘回归方法及应用[M].北京:国防工业出版社,2000..
  • 7Lahet F, Ouillon S, Forget P. A Three-component Model of Ocean Color and Its Application in the Ebro River Mouth Area[J]. Remote Sensing of Environment, 1999,72:181 - 190.
  • 8Sathyendranath S, Prieur L, Morel A. A Three-component Model of Ocean Color and Its Application to Remote Sensing of Phytoplankton Pigments in Coastal Waters[ J]. Int. J. Remote Sensing1989, 10 (8): 1373-1394.
  • 9Tassan S. Local Algorithms Using SeaWiFS Data for the Retrieval of Phytoplankton Pigments, Suspended Sediment, and Yellow Substance in Coastal Waters[ J]. Applied Optics, 1994,33 (12):2369-2378.

二级参考文献31

  • 1唐军武.海洋光学特性模拟与遥感模型(博士论文)[M].中国科学院遥感研究所,1998..
  • 2[1]Morel A, Prieur L. Analysis of variarations in ocean color [J] . Limnol. Oceanogr. 1977, 22:709~722
  • 3[2]Gordon H R, Morel A. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery [M] . A Review,Lecture Notes on Coastal and Estuarine Studies, R.T. Barber, N.K. Mooners, M.JBowman and B.Zeitzschel (eds.), Springer-Verlag, New York, 1983, 114
  • 4[3]Sathyendranath S, Morel A. Light emerging from the sea interpretation and uses in remote sensing [ M ] . In: Remote Sensing Applications in Marine Science and Technology. A. P. Cracknell(ed.), D. Reidel Publishing Company, Dordrecht,1983, 323~357
  • 5[4]Reports of the IOCG Number 3. Remote Sensing of Ocean Color in Coastal, and Other Optically-Complex, Waters ,1 ~5
  • 6[5]Hoge F E, Swigt R N. Chlorophyll pigment concentration using spectral curvature algorithms: an evaluation of present and proposed satellite ocean color sensor bands [J] . Appl. Optics, 1986, 25:3677~3682
  • 7[6]Cipplline P, Barale V, Davidov A et al. Updated MOS bio-optical algorithms in the Northwestern Black Sea [ C ] . 3rd International Workshop on MOS-IRS and Ocean Colour, Wissenschaft und Technik Verlag, Berlin, 1999, 93~ 100
  • 8[7]Dekker A G, Malthus T J, Seyhan E. Quantitative modeling of inland water quality for high-resolution MSS systems [ J ] .IEEE Trans. Geosci. Remote Sens. 1991, 29:89~95
  • 9[8]Gitelson A. The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration [J] . Int.J. Remote Sensing, 1992, 13:3367~3383
  • 10[9]Sathycndranath S, Platt T. Analytic model of ocean color [J] . Appl. Optics, 1997, 36:2620~2629

共引文献55

同被引文献248

引证文献17

二级引证文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部