期刊文献+

基于多尺度小波特征的高光谱影像亚像素目标识别 被引量:1

Subpixel Target Detection Approach Based on Multiscale Wavelet Features in Hyperspectral Imagery
下载PDF
导出
摘要 提出了一种基于多分辨率小波高频特征系数的高光谱遥感影像亚像素目标识别方法。首先利用多尺度小波变换将光谱信号分解为不同尺度的高频特征信号,然后借助接收操作特性曲线(ROC)和马氏距离投影寻踪求取一维最佳识别特征,最后通过高斯最大似然决策函数求解亚像素目标的存在概率。通过 38种小波函数的高光谱数据实验证明,该方法对亚像素目标的识别效果较好。 This paper presents a subpixel target detection approach based on multiscale wavelet high-pass coefficients in hyperspectral data.Firstly this algorithm uses multiscale wavelet transforms to obtain multiscale wavelet high-pass features of spectral signals.Secondly it gets the best-discrimination feature with receiver operating characteristics curves(ROC) and projection pursuit based on mahalanobis distance.Lastly it calculates the probability of subpixel target in every pixel with gauss maximum likelihood decision function.Experiment has been made with 38 kind wavelet functions in hyperspectral imagery,and proved that this algorithm is adapted for detecting subpixel targets and has an excellent precision result.
出处 《海洋测绘》 2005年第2期21-25,共5页 Hydrographic Surveying and Charting
基金 国家"863"资助项目(2002AA783050)
关键词 多尺度小波特征 接收操作特性曲线 投影寻踪 高斯最大似然决策函数 multiscale wavelet features receiver operating characteristics curves projection pursuit gauss maximum likelihood decision function
  • 相关文献

参考文献10

  • 1C C Borel,S A W Gerstl.Nonlinear spectral mixing models for vegetative and soil surfaces[J].Remote Senseing Environ,1994,(47):403~416.
  • 2C I Chang,D C Heinz.Constrained subpixel target detection for remotely sensed imagery[J].IEEE Trans Geoscience Remote Sensing,2000,38(3):1144~1159.
  • 3C I Chang,X L Zhao,M L G Althouse,et al.Least squares subspace projection approach to mixed pixel classification for hyperspectral images[J].IEEE Trans Geoscience Remote Sensing,1998,36(3):898~912.
  • 4E A Ashton.Detection of Subpixel Anomalies in Multispectral Infrared Imagery Using an Adaptive Bayesian Classifier[J].IEEE Trans Geoscience Remote Sensing,1998,36(2):506~517.
  • 5J A Hanley,B J McNeil.The meaning and use of the area under a receiver operating characteristic(ROC) curve[J].Diag.Radiol,1982,(143):29~36.
  • 6K Naoko,K Yukio.Ica aided linear spectral mixture analysis of agricultural remote sensing images[J].4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003),Japan:2003,221~226.
  • 7Luis Jimenez,David Landgrebe.High Dimensional Feature Reduction Via Projection Pursuit[D].Purdue.1996.
  • 8R L Huguenin,J L Jones.Intelligent information extraction from reflectance spectra: absorption band positions[J].Journal of Geophysical Research,1986,91(B9):9585~9598.
  • 9R S Rand,D M Keenan.A spectral mixture process conditioned by Gibbs-based partitioning[J].IEEE Trans Geoscience Remote Sensing,2001,39(5):1421~1434.
  • 10宫彦军,王艳红,禹秉熙.高光谱识别目标的光谱分离分析方法[J].内蒙古大学学报(自然科学版),2003,34(2):231-234. 被引量:7

二级参考文献6

  • 1[1]Alexander F, Goetz H.Imaging spectrometry for remote sensing : Vision to reality in 15 years [C].SPIE,1995,2480:2~13.
  • 2[2]Neil H, Endsley.Spectral unmixing algorithms based on statistical models [C] .SPIE,1996,2480:23~26.
  • 3[3]Adams J B, Smith M O,Johnson P E.Spectral mixture modeling:A new analysis of rock and Sail typer at the viping lander 1 Sile [J].J.Geophys.Res.,1986,91(8):8 098~8 112.
  • 4[4]Adams J B,Smith M O,Gillespie A R.Simple models for complex natural surfaces:strategy for the hyperspetral Era of Remote Sensing [R].IGARSS,1989,1:16~21.
  • 5[5]Boardman J W.Analysis,understanding and visualization of hyperspectral data as convex sets in n-space [C].SPIE,1995,2480:14~22.
  • 6[6]Boardman J W.Autamating Spectral unming of AVIRIS data using convex geometry concepts [C].4th Annual JPL Airborne Geoscience Workshop,Pasadena,CA,JPL.Pub.,1993,93~26,1:11~14.

共引文献6

同被引文献24

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部