摘要
主要讨论二阶非线性椭圆型方程在多连通区域上的间断Poincare’边值问题。这里,我们先提出此边值问题的一种新的适定提法,并给出这种变态边值问题解的先验估计式,然后使用上述解的估计与Schauder不动点定理,证明这种变态边值问题解的存在性,进而导出原边值问题的可解条件。
In this paper,we mainly discuss the discontinuous Poineare’boundary value problem for non-linear elliptic equations of second order in multiply connected doinains.Firstly ,we give a new well-posedness of the Poincare'problem and obtain a priorlestimates of solutions for the modified prob-em. Secondly,by using the above estimates of solutions and the Schauder fixed-point theorem,weprove the solvability of the above medified problem,moreover,the solvability conditions of the o-riginal Poincare'problem are derived.
出处
《烟台大学学报(自然科学与工程版)》
CAS
1994年第1期6-11,共6页
Journal of Yantai University(Natural Science and Engineering Edition)
关键词
边值问题
非线性
椭圆型方程
Discontiouous boundary value problems.Nonlinear elliptic equations of second or-der.