期刊文献+

Laplace特征值的非协调元对称展开和外推

Asymptotic Expansion and Extrapolation for the Eigenvalue Approximation of Laplace Eienvalue Problem by Nonconforming Element
下载PDF
导出
摘要 利用Bramble Hilbert Xu引理对Laplace特征值用一个非协调元作对称展开,给出该单元在研究Laplace特征值问题时的误差主项,并进一步给出外推结果,最后给出数值验证。 By using nonconforming element and Bramble-Hilbert-Xu Lemma, Laplace approximating eigenvalue is given by the means of asymptotic expansion and the main error terms are presented ,too. The extrapolation results are existed, then these numerical results are tested with uniform meshes and anisotropic meshes.
作者 苗宝军 郝颖
机构地区 许昌学院数学系
出处 《南阳师范学院学报》 CAS 2004年第12期10-14,共5页 Journal of Nanyang Normal University
关键词 Laplace特征值问题 对称展开和外推 非协调元 Laplace eigenvalue problem asymptotic expansion and extrapolation nonconforming element
  • 引文网络
  • 相关文献

参考文献11

  • 1[1]Lin Q,Yan N.High Efficiency FEM Construction and Analysis[M]. Hebei University Press,1996.
  • 2[2]Lin Q,Lin J. High Performance FEMs[M] .China Sci. Tech. Press,2004.
  • 3[3]Rannacher R.Extrapolation Techniques in the FEM(A Survey), In Summer School on Numerical Analysis,MATCE[J]. Helsinki,Univ. of Tech., 80 - 113,1988.
  • 4[4]Rannacher R. Defect Correction Techniques in the FEM, Progress in Partial Difference Equations[ J]. The Metz Surveys, 184 - 200,1991.
  • 5[5]Strang G and Fix G. An Analysis of the FEM, Prentice Hall[ J ]. Englewood Cliffs, N. J, 1973.
  • 6[6]Roos H, Styness M and Tobiska L. Numerical Methods for Singularly Perturbed Difference Equations, Convection-Diffusion and Flow Problems, Pitman res. Notes Series in Computational Mathematics [ J ]. 24, Springverlag, Berlin, 1996.
  • 7[7]Stynes M and Tobiska L. The SDFEM for a Convection-Diffusion Problem with a Boundary Layer: Optimal Error Analysis and Enhancement of Accuracy, Otto-Von-Guericke[J]. University Magdeburg, Germany,2002.
  • 8[8]Zhou G and Rannacher R. Pointwise Superconvergence of the Streamline Diffusion Finite Element Method[J]. Numer. Methods PDEs, 12:123 - 145,1996.
  • 9[9]Lin Q. High Performance FEMs[J]. International Symposium on Computational and Applied PDEs, July 1 -7,2001 ,China.
  • 10[10]Ciarlet P G. The Finite Element Method for Elliptic Problem[ J]. North-Holland, Amsterdam, 1978.

相关主题

;
使用帮助 返回顶部