期刊文献+

MkdV方程的多辛算法及其孤子解的数值模拟 被引量:1

The Multi-Symplectic Algorithm for MKdV Equation
下载PDF
导出
摘要 考虑非线性MkdV方程的多辛形式,对于多辛形式,提出了一个等价于中心Preissman积分的15点多辛格式.数值试验给出了MkdV方程单孤子和双孤子解时间演化的数值模拟.结果表明:多辛格式具有良好的长时间数值行为. The multi-symplectic formulation of the MKdV equation is considered. For the multi-symplectic formulation , a fifteen-point difference scheme which is equivalent to the multi-symplectic Preissman integrator is derived. The numerical experiments show that the multi-symplectic scheme has excellent long- time numerical behavior .
作者 郭峰
机构地区 华侨大学数学系
出处 《漳州师范学院学报(自然科学版)》 2005年第1期9-12,共4页 Journal of ZhangZhou Teachers College(Natural Science)
基金 华侨大学校级科研基金资助项目(04HZR08)
关键词 MKDV方程 多辛算法 孤子解 辛格式 等价 时间演化 积分 数值试验 MKdV equation multi-symplectic conservation law
  • 相关文献

参考文献6

  • 1FENG Kang, Qin M Z. The symplectic methods for the computation of Hamiltonian equations[A]. ZHU You-lan, GUO Ben-yu Eds. Proc. of 1 st Chinese Cong. On Numerical Methods of PDE's, March 1986, Shanghai, Lec-ture Notes in Math[C]. No 1279,Berlin :Springer, 1987, 1-37.
  • 2FENG Kang. On difference schemes and symplectic geometry[A]. FENG Kang Ed. Proceeding of the 1984 Bei- jing Symposium on Differential Geometry and Differential Equations,Computation of Partial Differential Equations[C]. Beijing:Science Press, 1985, 42-58.
  • 3FENG Kang. Difference schemes for Hamiltonian formulism and symplectic geometry[J]. J Comput Math, 1986, 4(3): 279-289.
  • 4Bridges TH J, Reich S. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity [J].Physics Letter A, 2001, 284(4-5): 184-193.
  • 5Bridges TH J. Multi-symplectic structures and wave propagation [J]. Math. Proc. Cam. Phil. Soc., 1997, 121 (2): 147-190.
  • 6Reich S. Multi-symplectic Runge-Kutta methods for Hamiltonian wave equations[J]. J Comput Phys,2000,157 (5) :473-499.

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部